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LIST OF SYMBOLS.

This list contains only those symbols which are used consistently

throughout the whole report. Symbols which have only special

meanings for certain sections will be appropriately defined in

the text.

B magnetic field

D diffusion coefficient

E electric field

e unit charge

f distribution function
5 h Planck's constant

I saturation current

I identity tensor

J Bessel functions
o, 1

N Neumann functions0,1
j electric current density

k Boltzmann's constant

m mass of the charge carriers

n particle density

P pressure tensor

p scalar pressure

R radius of the discharge vessel

Sr space vector

r radial distance

T temperature

t time

U. ionization potential

U electric potential

v drift velocity
d

0& ionization coefficient per particle and per sec.

__......_ _____ ____ ____ ....



se ionization coefficient per particle and per cm

Ssecond Townsend coefficient

Sspecific heat capacity

A. mean free path of the electrons

A mobility

mass density

T recombination coefficient

W• eigenvalue

f" particle current dens.ty

U

iw



I. INTRODUCTION.

The object of gaseous electronics is a system which consists of various

particle components. Some or all of these components may be singly or

multiply charged ions. It is assumed that there is no coordination of the

same neighbouring particles for times essentially longer than the life-

time of the system in a microstate of the r' -space.

Obviously there is an enormous variety of systems which fulfil these

conditions. The quantities of these systems depend strongly on the ex-

ternal parameters and the boundary conditions which are imposed by

V, the experimental setup. Nevertheless the principal properties r1 the

problem of stability can be discussed in general form.

Let us introduce a set of parameters X. which we will call the

EXTERNAL PARAMETERS. In this group we will take all the quan-

tities which define the experimental setup and which can be disposed

of by external manipulation. Such parameters are for example the geo-

metry of the device, the material and temperature of the walls, the po-

tential applied, the external magnetic field etc. Let us further intro-

duce a set of variables Y.# which we call the INTERNAL VARIABLES.I, These internal variables cannot be disposed of from outside but for a gi-

yen set of external parameters Xp they are determined by the interior

mechanism of the system. Of course the number of these variables intro-

duced must be sufficient to allow a complete description of the mechanism

within the range of accuracy required. Examples for such internal vari-

ables are e. g. the particle number densities n , the particle velocities

Sv ,the temperatures of the particle components T , the local elec-

tric field E , etc.

The time and local dependences of the internal variables are governed

by a system of differential equations prescribed by the relevant physi-

I



cal laws. The external parameters enter these equations and determine

the boundary conditions.

For the STATIONARY STATES this general system of equations sim,

plifies due to the relation 0/t 0. In the following we call such sta-

tionary states "S-MODES".

In general the possibility cannot be excluded that we have more than

one s-mode for one given set of external parameters. There are two

reasons. First, our system with the boundary conditions can have more

than one solution. Secondly, one of the boundary conditions may be ren-

dered ineffective due to the statistical fluctuations always present in a

real physical system.

As an example we may refer to the S chottky solutions for different

currents belonging to the external parameters of the longitudinal field,

tube radius, gas kind and pressure. Interesting examples are also pro-

vided by Ke nty 's diffuse and filamentary discharge (Fig.15) and by

the various arc spot modes (Fig. 16).

Let us form a multi-dimensional space of the parameters X. . Then

let us introduce a function U (X0 ) which can take only integer va-

lues (U-0, 1.2.. .,). The value of this function determines the number

of possible s-modes for the set of external parameters.

Independent of the value of the U function it is quite possible that

the experiment will not produce any s-mode. The reason would be that

all modes are unstable. That means they are unable to sustain them-

selves in the stationary state against small perturbations, which always

occur in any kind of a physical system. Here is the point where the pro-

blem of stability comes into consideration and we see immediately that

it is of excellent importance.
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II. THE CONCEPT OF STABILITY.

We call a s-mode stable if small deviations from the Y9  state are

damped. We call it unstable if the small deviation@ from the state grow

in amplitude in such a way that the system progressively departs from

the initial state and never returns to it.

This general definition is not sufficient for detailed discussions be-

cause the following questions are not taken into account.

1. The problem of stability can depend on the amplitude of the distur-

bance. A system may be stable against small deviations but un-

stable for slightly larger deviations.

2. The problem of stability can depend on the kind of disturbance con-

sidered. A certain s-mode may be stable with respect to disturban-

ces of a certain kind but unstable with respect to different distur-

bances.

3. If a particular s-mode is stable in one part of the Xp -space and

unstable in the other partthen there must be a region of the para-

meters X.• in which it is neither stable nor unstable but neutral.

The situation in this "neutral state" shows two different forms de-

pending on whether or not the imaginary part of the coefficient de-

termining the time dependence is zero. If the imaginary part is zero

then in the neutral state the system passes from an aperiodically

growing to an aperiodically damped state. If the imaginary part id

finite then the system passes from an oscillatory growing to an os-

cillatory decaying state.

We base our discussions on the following definitions.

ABSOLUTE STABILITY: A given system in a certain stationary state

shows absolute stability if it returns to the stationary state after any

kind and any magnitude of parameter disturbance.
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RELATIVE STABILITY: A given system in a certain stationary atate
shows relative stability if it returns to this stationary state after any

kind of infinitesimal parameter disturbance. v

TYPE-A-STABILITY: A given system in a certain stationary state

shows relative or absolute stability of type A if it returns to this sta-

tionary state after an infinitesimal respectively arbitrary disturbance

of parameter A.

MARGINAL INSTABILITY: If all initial states are classified as stable

or unstable according to the criteria stated above then in the f9 -space

the locus which separates the two classes of states defines the state of

marginal or neutral stability.

SECONDARY FLOW INSTABILITY: If in the state of marginal instabi-

lity the imaginary part of the coefficient determining the time dependence

is zero then we say that the principle of the exchange of stabilities is

valid or that we have an instability of secondary flow. In this case the

restoring forces are to small to sustain the s-mode.

OVERSTABILITY: If at the onset of the instability the imaginary part

of the coefficient determining the time dependence is finite then the os-

cillatory motion prevails and we have a state of overstability. In this

case the restoring forces are so large that they overshoot the stationary

state of the s-mode and cause the increasing oscillations.

III. MODE ANALYSIS OF THE STABILITY PROBLEM.

In this investigation we will not treat the problem of "absolute stabi-

lity".

The theory of relative stability has the decisive advantage to allow

linearization of the equations.

Our preceding definition of "relative stability" suggests the following

way to investigate the stability question:
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We consider small perturbations of the internal variables and study

the time dependence of these deviations. Here two difficulties occur.

The one is that our system is stable only if it is stable with respect

to all possible initial increments. The second is that the time depen-

dence not only changes the amplitude of a given initial disturbance but

also its form. It is possible that with the change in the form an ini-

tially growing amplitude might gradually die out again. Such a state

we would not call unstable.

To overcome the difficulties described above we consider the eigen-

solutions of our perturbation (index (1) ) which are characterized by

the time dependence

cut)

Introducing equation (1) into our system we find a set of equations which

defines together with the boundary conditions an infinite number of ei-

gensolutions and eigenvalues WU These eigenfunctions provide a

complete orthogonal system of functions. Any initial disturbance may

F be developed after these functions. Consequently the question of stabi-

lity is reduced to the question whether anyone of the eigenvalues CO

has a positive real part.

Therewith our task is to d,.termine the eigenvalues.

Only in special cases the eigenfunctions can be determined in closed

form and we have directly a dispersion relation

W(w) I 0 (z)

defining the eigenvalues CU

In general normal mode analysis is applied. In this case the eigen-
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function is developed into a series of appropriate orthonormal functions.

(normal modes).

k A

The terms of the differential equations can still depend on the coordi-

nates via the imperturbed stationary solution. Therefore we encounter

products of the form

(4) /o(r)
A, k k

Now we use for this whole term a mode representation in the form

(5) ee) . Za (?(f

where the coefficients bj are related to the coefficients ak by

We introduce this into our equations and collect all terms belonging

to the same normal mode. Since our relations must be fulfilled for any

value of the coordinates, the sum over the coefficients of each mode

must be identical zero for all equations. This provides an infinite set

of homogeneous equations. We have as many equations as coefficients

ak and therefore a solution exists only if the secular determinant of

the coefficients disappears. This condition leads to the characteristic

dispersion equation for the eigenvalues w

Introducing these eigenvalues into the equations for ak allows to

calculate these coefficients and with that the eigenfunctions.

If we have already the eigenvalues 0 from equation (2) or from the

secular determinent then we can decide the question of stability by

studying the sign of the real parts of W
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However if we are merely interested in stability we do not really have

to solve the dispersion relations. The question whether all the roots

lie in the negative G a u s s i a n plane can be answered by the following

criteria.

Following Nyqui • t let us assume that our general dispersion rela-

tion (2) describes a conformal mapping of the W* -plane in the

W-plane. Then from Cauchy's theorem we have

j "0'dca 2T iNI (7)

Where N is the number of zeros of W within the contour of the

integral. Using the substitution W = R. exp ( ji ) it follows then

S- 2'TiJ (8)

Consequently the question

of stability may be decided

by plotting in the W-plane

the curve corresponding to ___

the integral contour in the

W -plane (See Fig. 1).

From the number of en-

circlings of this curve we

may conclude to the num-

ber of roots lying within %. it-fth mm M0 .

the contour of our integral

in the CW -plane. This

provides us with the cri-

terion for stability.

In the case of the normal mode analysis the dispersion relation is in

general represented by an infinite power series.



It can happen that this series reduces to a polynomial or can be repre-

sented as a product of polynomials. Then we have simpler criteria to

decide the question of stability.

A necessary condition for all the roots having negative real parts -that

means a necessary condition for stability - is that all the coefficients

of the polynomial have the same sign.

If the polynomial considered is of the quadratic type then the criterion

of equal sign of all coefficients is also sufficient. For higher order po-

lynomials the sufficient criteria are more complicated.

The best known necessary and sufficient criteria to decide whether all

roots have negative real parts are those of Routh and Hurwitz.

According to the criterion of Hu r wit z we have stability provided that

all elements c and all "Hauptabschnittdeterminanten" D of the

following matrix

c, co 0 0. 0
(9) Ca Ca C, cO.

C'sC 4  C.8 ca. 0

have a positive sign. The elements of the matrix correspond to the co-

efficients of the secular equation. The tIHauptabschnittsdeterminenten'I

are

(lo) Da CY 1, CAI~GIf~ Di IC n C nICS Co caI

j
o o oo___



The R ou th criterion can be understood from the following scheme.

•, 0,,.U,. a.. . 1"- c-.#/,,.
CP • f -itC . .

In this scheme the third equation is produced from the first two ones

by multiplying the second with the factor indicated on the right hand

side and adding it to the

first equation. The result

is given in the third equa-

tion where we have shifted

every coefficient by one

place to the left hand side.

The fourth equation is

produced in a similar way
by the multiplication of the low

third equation and addition

to the second one etc. If

all the roots are supposed Fin. .h:... .k. o. fr, h."On.&,.
vetktIrlteium".

to have negative real parts,

then all the numbers of the first column must be positive. That means

proceeding from one equation to the next we may stop our calculation

at the very moment if zero or a negative quantity appears, because then

we know that the problem under consideration exhibits instability.

The "ORTSKURVENKRITERIUM" considers the mapping of the com-

plex W -plane into the W-plane as prescribed by the dispersion re-

lation W(WU ). The imaginary axis of the W -plane ( W = iy) pro-

duces a certain curve in the W-plane (See Fig. 2).
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(1W) CO . 0C A 6 CfU

- I() Y(V
S"R e '

If we follow the imaginary axis of the W -plane from -sto + oo

then again a certain path in the W-plane the socalled "Ortskurve" is

travelled trough. It is sufficient to consider only the part O0 y4+

since we have the relations X(- y) = X (y) and Y (-y) = - Y(y).

The criterion reads now: Equation (12) has roots with negative real

parts only if the "Ortskurve" in the W-plane surrounds the origin

in such away that the angle f of the pointer in the W-plane covers

the range 0 a 0..... n /2 if y goes from zero to infinity.

If there are roots with positive real parts and the angle covered may

be written in the form

(13) 9 P

then the number of roots with positive real part is given by

(14)

and number of roots with negative real part is given by

(15).

To evaluate the "Ortskurvenkriterium' it is not really necessary to

plot the path in the W-plane. It is already sufficient to show that the

following is correct:
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"LUCKENKRITERIUM t : The equation W ( w) = 0 has roots with

negative real parts only if the equations

K -,o.) 0; Y 0 (16)

2
with s = y have positive roots s. respectively s. only,if the zeros.J J
follow the sequence

,,<, <, <s C' . (17)

It is not even necessary to solve for these roots since it is sufficient

to show that for c > 0 the equation
n

- 0(18)
*fe 0

has positive real parts only

o0 <? <•-..• (19)

and that the values of the function Xj= X(sj ) changes its sign from

one to the next root.

X, < o, X,• > o,* Xj < o, • (20)

The normal mode analysis as described above has been frequently

used. For a specific problem it is a powerful instrument. It allows to

decide not only the question of stability but also implies the determi-

nation of the eigenfunctions and the growth of the instability respective-

ly the decay time.

The second procedure to tackle the problem of stability restricts it-

self from the outset to the calculation of the stability criterion. There-
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fore the mathematical handling is simpler. The approach we refer

to is the METHOD OF VARIATIONAL PRINCIPLE.

IV. VARIATIONAL PRINCIPLE ANALYSIS OF THE

STABILITY PROBLEM.

There are essentially two difficulties inherent in the normal mode ana-

lysis. After choosing an appropriate set of orthogonal modes to expand

the eigenfunctions the one problem arises from the calculation of the

coefficients of the expansions ( 6 ). These coefficients include difficult

integral expressions which cannot be evaluated in general form. The

other problem is caused by the formidable difficulties in the evaluation

of the secular equation.

A simplification can be expected by renouncing the specific knowledge

of the frequencies and growth rates and by simply restricting our

question to the criterion for the onset of instabilities.

This is the basic idea of the variational approach to the stability problem.

The principal features of the calculations are quite similar to those of

the normal mode analysis. We again consider small deviations from an

s-mode. This allows us to linearize the relations and we have a set of

differential equations for the first order perturbation where the coeffi-

cients may depend on the qualities of the stationary state solution.

As in the case of the normal mode analysis the eigenfunctions of this

first order problem are characterized by the relation (1).

We reduce our system of differential equations to one equation

(21)



for the dependent variable We develop after the eigen-

Sfunction, in the form

The applicability of the variational method depends on the character

of the operator • Therefore specification of this operator is required

for further discussion. As an example we treat here the case, where

equation (21) reduces to

4(V ) Yy (23)

where the operator Z does not contain the time anymore. Introducingr

equation (22) into equation (21) and using equation (23) we find

(24)
kk

We now develop the adjoint function after the adjoint eigenfunctions

k 9 't 1 t7*Fk e(25)

Multiplication of equ. (24) with and the appropriate weight function

w and integration produces

)w(- d-r or.c Jry W(id-dr(z6)

If the operator is self-adjoint it follows

fr a Z,, w (27)

j, k k k k k isk
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Remembering that the Ck are first order quantities we aim to re-

present the right hand side of equ. (27) as a variation of a physical

quantity Q. If this is possible we arrive at

(28) IEcs 51 &tQ

Since all values of 1kak are positive, the left hand side can be ne-

gative only if at least one of the eigenvalues has a negative real part.

In this simple example the imaginary parts must all be zero, since the

physical quantity Q is real.

Therefore if all the eigenvalues Wk are real and positive, the right

hand side of the equation (28) is a positive definite form of the devia-

tions from the stationary state. Since it is sufficient if one value be-

comes negative we can conclude the following stability criterion:

The system under consideration is stable then and only then if the phy-

sical quantity Q is a positive definite form with respect to all pos-

sible deviations from the stationary state.

V. STABILITY CONSIDERATIONS IN PLASMA

PHYSICS.

The methods prescribed in the preceding paragraphs were originally

developed in connection with the stability problems in hydrodynamics.

During the recent years they have been widely applied also to problems

of plasma physics. The applications may be grouped according to the

underlying physical model.

The M H D approximation is based on the essential assumptions of

skalar pressure, an adiabatic invariant
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d 
(29)P 0t

and infinite conductivity.

For this model the gross instabilities of a cylindrical plasma column

have been calculated 53 . Also the stability of a plasma in contact

with a magnetic wall has been studied. Here normal mode analysis

produces similar to the Rayleigh Taylor instabilities of hydro-

dynamics, gravitational, flute and ripple instabilities

The variational analysis has been applied to maignetohydrodynamics

by Lundquist and later by Bernstein, Frieman, Krus-

k a 1 and Ku 1 s r u d 9. They showed that for a magnetohydrodynamic

device the function Q can be identified with the potential energy.

That means a magnetohydrodynamic system is in equilibrium if the

variation of the potential energy is a positive definite quadratic form,

- provided that certain conditions are satisfied.

13
Chew, Goldberger and Low have treated a different appro-

ximation in which the pressure is not scalar and there are two adia-

batic invariants for the pressure parallel and perpendicular to the mag-

netic field. In the C. G. L. approximation the stability of a plasma may

be also decided by an energy variation 9

Generalizations of the energy principles of the M. H. and the C. G. L.

approximation have been given by K ruskal and Obe rman54 and

Rosenbluth and Rostocker 72. The energy change calculated

by these authors is bounded below by the M. H. energy change and above

by the C. G. L. energy change.

In a recent publicationRosenbluth and Fuerth 71 study the

problem of micro instabilities in a system of finite resistivity.
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For the general phenomenon of micro instabilities there is no general

physical model but various special cases have been treated 71, 73

For our investigation of the stability qualities of the arc and the glow

discharge the results quoted above are not applicable, because the

underlying conditions are not met.

Since the equations describing the system are characteristic and de-

cisive for the stability consideration one would like to define our pro-

blem by stating the equations and the approximations.

Unfortunately in the case of the gas discharges there is no unique set

of equations describing the whole arc and glow region. Rather we have

in each of these discharge types a number of model zones governed by

different relations.

As a consequence we will expect that the various model regions of the

discharges can exhibit different stability qualities. Our discussion must

be specified with respect to each model region.

Since all stability calculations require the knowledge of the s-modes

we at first discuss the possible s-modes. This presents at the same

time the equations and approximations of our considerations.

VI. BASIC EQUATIONS. BOUNDARY CONDITIONS,

AND APPROXIMATIONS.

Most of our investigations will be based on the following equations.

From the Bolt z mann transport equation we derive by multiplication
2

with m, my, my /2 and integration over the momentum space the

following transport equations



23

± n * (30)
F ((nd))

F (31)

5t in

(1 h ve ) bee used. E'

It

R~P ((32))S~~f. ~

M V

where the approximations

P -nkTI

(33)

have been used.
S0t denotes the net particle production per second and unit volume. The

collision frequencies

p (34)
a -nJ cdS2

are related to the mobilities and the electron-ion interaction

parameters ?• according to

S•2-, ' (35)

.
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A THE GLOW APPROXIMATION.

Characteristic for the glow approximation is the following:

In the particle conservation law for the charged particle components

the destruction is dominated by diffusion and mobility losses and

not by volume recombination. In other words: The fact, that each

volume element is an open system with respect to the charged par-

ticle balance is decisive and characteristic for the glow approxima-

tion.

Characteristic for the glow model is also the boundary condition

at the wall. We have at the sheath edge for the particle number den-

sity the condition

(38) (0,, g,-,,= .0,7 (,•' ,,.

where r is an uncertainty factor of magnitude one, accounting for

the influence of the geometry and transition region 16a For very

small values of the mean free path equation (38) simplifies to

(39) ('n), 0

Apart from these characteristic features one in general also assumes

weak ionization

(36) n. k Tn- p const

qua sineut rality

(37) n. , r,

S. . .. .. . . . ,
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and the validity of the energy balances

", T. (40)
Tt Tn

and

T. cE A (41)

with C being a constant typical for the gas.

B THE ARC APPROXIMATION.

C ha r a c t e r i st i c for the arc approximation is the following:

In the particle conservation law for the charged particle components

the destruction is dominated by volume recombination and not by dif-

fusion and mobility losses. In other words: The fact, that each volume

element is a closed system with respect to the charged particle balance

is decisive and characteristic for the arc approximation.

Characteristic for the arc model is also the boundary condition

at the wall

W ) o (42)

From these conditions the local validity of the Saha equation

? -2p% (kr)J (27,,. exp -U (43)

follows.
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Apart from these characteristic conditions one in general also

assumes

r*Tr 7:(44) # .- r

and quasineutrality.

C LIMITATION OF GLOW AND ARC APPROXIMATION.

The glow and the arc approximation described in the preceding

chapters are cornplementary. We therefore need only one limitation.

According to. the definitions this limitation is given by

(45) di, (oogcq a)- , n' n.

where ( 6 ) is the recombination coefficient.
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D INEFFECTIVE BOUNDARY CONDITIONS.

The above definitions of the glow and the arc model are based on the

assumption that the boundary conditions (38) and (42) are the effec-

tive ones.

Physically these boundary conditions formulate the requirement of

particle current continuity and energy current continuity respectively,

at the sheath edge. There may be physical influences not included in

our description above which take an effect on these continuity require-

ments. These effects may either be due to additional phenomena like

external fields, convection etc. or they may be due to the normal

statistical fluctuations present in any kind of real discharge.

If these influences become stronger than the terms included in the

formulation of our boundary conditions (38) and (42) then they render

these conditions ineffective.

The behaviour of our discharge is different depending on whether the

ineffectiveness is caused by an other external influence or by statisti-

cal fluctuations.

In the first case the additional phenomenon determines the selection

of the observed mode and we have a different effective boundary con-

dition.

In the second case the statistical fluctuations which outrule the boun-

dary conditions allow transitions between all those modes which are

possible without the wall boundary condition. In this case the observed

mode is determined by a stability criterion.
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VII STATIONARY MODES OF THE GLOW- AND

ARC DISCHARGE.

Without a claim to completeness we underlay our investigations the

following stationary modes of the arc- and glow discharge.

A) NORMAL GLOW COLUMN (SCHOTTKY-COLUMN

B) THERMAL GLOW COLUMN

C) GLOW COLUMN WITH NEGATIVE IONS

D) WALL DETACHED GLOW COLUMN

E) WALL STABILIZED ARC COLUMN

F) WALL DETACHED ARC COLUMN

G) CATHODIC PART OF THE ARC DISCHARGE

H) ANODIC PART OF THE ARC DISCHARGE

I) CATHODIC PART OF THE GLOW DISCHARGE

J) ANODIC PART OF THE GLOW DISCHARGE

ANORMAL GLOW COLUMN (SCHOTTKY COLUMN).

The normal glow column is governed by the following mechanism:

Electrons and ions move in the axial direction under the influence of

a longitudinal electric field. At the same time they move towards the

wall under the influence of a concentration gradient and a radial ambi-

polar field. Particle production is due to collisions of electrons with

neutral particles. Particle loss is due to wall recombination only.

Volume recombination is neglected. The temperature of the electrons

is defined by the energy gain in the electric field on the one hand and the

energy loss by colLsions with neutral particles on the other hand. The

temperature of the ions is determined by the energy gain from the elec-

tric field and the energy loss due to collisions with the neutral particles.

There is no radiative loss. Therefore the total energy gained from the

electric field is carried to the walls by heat conduction of the neutral
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particles. The energy input is

so small that the neutral par-

ticle temperature can be con-

sidered constant across the

"discharge. Then - for weak

ionization - also the electron-

and ion temperature are con-

stant. The longitudinal elec-

tric field adjusts itself in

'such a way that the number

of particles produced in the

discharge covers the particle rig- 11 Sh1|•l| .k.lch f th. do.sity od
ltmprAlgvf. distributlo. In lb. 4n1.ml

loss to the walls. %low column.

Under these assumptions the glow approximation (VI A) is applicable

throughout the whole discharge volume.

The longitudinal electric field is constant due to

rot E - 0 (46)

In equations (31) we use the conditions of stationarity •/t 0 , weak

ionization pnnkTn and the relation

D# /~P/e # T / (47)o: Pz/ire "k rT l

With the condition of congruence

rro, ', (48)

we eliminate all azimuthal components and the electric field and arrive

at
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(49) D.# iL n-

with

(50) Def +D o " ff - = D,, ÷ 1 / , • . B , u / , s

Introducing this into the particle conservation law we have the equation

dd
(51) "F (roe/f ÷ l - 0

which together with the boundary condition (39) defines an eigenvalue

problem for the electron density and the eigenvalue 06 . Since the

particle density n can only assume finite positive values the well

known solution of this eigenvalue problem is

(52) n (r) -n. -70 ((W'/D~f r)

with

(53)

Since the production coefficient 4 depends on the electron tempe-

rature according to the relation

(54) .(T-) A (K) *U1(-~

and the electron temperature is determined by the electric field

according to equation (41) the eigenvalue (53) defines the eigenvalue

of the electric field. Obviously the gradient E is independent of



the current within the frame of the S chottky theory.

Schottky 's theory underlies the assumption that the charged car-

riers are produced by a single ionizing collision. In rare gases where

the formation of metastable atoms is common cumulative ionization may

occur. One expects these processes to increase with current. The cu-

mulative ionization causes a field decrease with increasing pressure.

Spenke and Fabrikant 22, 81 included cumulative ionization by

adding nonlinear terms in the equation (51). In an exact treatment

the additional particle components, like e. g, the metastables, should

be treated with a separate particle balance equation (see e. g. Chapter

VII C).

Schottky's theory also does not account for volume recombination.

This effect becomes important with increasing particle densities. Par-

ticularly in the presence of electronegative gases or molecular gases

volume recombination may be of remarkable influence.

B THERMAL GLOW COLUMN.

One of the characteristic approximations for the Schottky theory

of the normal glow column is the assumption of constant electron, ion

and neutral gas temperature across the discharge.

In this chapter we will give an approximate calculation of the column

in which the thermal effects cannot be considered as a small pertur-

bation of the normal glow theory.

For the thermal glow column the whole model concept of the normal

glow column holds with one exception: The energy input is so large

- --- -



52

that a variation of the neutral

gas temperature is caused which

cannot be considered as a small

perturbation. As a consequence,

electron and ion temperature

show a radial variation. rv"\

Therefore the following equa-

tions apply.

The particle conservation law

for the electrons . 4: kh...h°. .h. ,. . , ..

(55) d$mpetS~--n- dr De#

Under the assumption of weak ionization the particle balance for the

neutral component simplifies to

(56) Mn k 'p. -Conat

The energy balance of the electrons reads

(57) T. - c E A -

and the energy balance of the neutral particle component is

(58) 201 (,da.) En 0
I~dr di"
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The coefficient of the volume particle production per sec. will be re-

presented in the form

a6 A exp( 4') (59)

I The experiments provide the information

e- Ap (~)(60)
P E0

Here it should be remembered that the characteristic parameters are
actually not 4/p and E./p but 4/n and E/n nwhere n is

the neutral particle density. Since all experiments are carried out with

constant neutral particle temperature, p reflects the dependence of

n n In our calculations however the temperature of the neutral gas

can cause a variation in the neutral gas density. Therefore we should

apply the relation

�- p,• = eXp - . A exp (61)rn E Tn k )T

The experimental knowledge (60) not only provides the coefficient A

but also defines the coefficient C of equation (57) according

to

eu._L T1• E - cA E (62)

Iap T" "

Now we introduce equations (56) and (57) into (58) and have the following

relation for the electron temperature

I
0 (63)rIr di") n(3



With the abbreviations

(64) P' •w
@U; E

Equations (55) and (63) are two simultaneous differential equations for

the electron temperature and the electron density in the discharge.

In addition we have the boundary conditions

dr, 0 dr
"d'" or for

(65)
Sn O, T TW for rm R

This is an eigenvalue problem with the eigenvalue E

We base our approximation on the

fact that the production coefficient

due to the strong dependence on

the electron temperature shows a

shape similar to that of a step

function. Consequently we repre-

sent 96 by the step function

shown in Fig. 5. The three quan-

tities 4e , 0 , characte-

rize the step function. CC, is the

production coefficient correspon-

ding to the electron temperature r,,. 5, s,.,pP,.,..,,,o. 1k,. p,."duc.

f in the axis. 660 is the productioni coefficient corresponding to the

wall temperature of the electrons. The position of the step (

is derived from the condition 0,61e (y) m to be

(66) Oui 0(A,v,.)E'no O,#



With this step function for d it is not difficult to find the density

and temperature distributions in the interior and in the outer part

independently. The result is

U •, J. ([./O1.) (67)

. , Jo (f.'.1offI'r). .N o No([../O.ffJ -) (69)

To - T'30 ([sea/ o/, lr) + TMNO ( /, IDfJ r)+ To, i # ., Air (70)

In these equations the boundary conditions at r = 0 are taken into

account but not those at r = R.

07 dr " dr dr (71)

These conditions secure finite values of the particle current densities

and finite values of the sources at r

The application of tho conditions (71) at r = and the conditions

(65) at r = R to the equations (67) - (70) results in

no 30, .Iogs (72)

no, JO {{,.1o,•,ji f). .. ,N.(/,.*.,g y)
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()g. 3,([,/o.

(73) a

(74) J1 (116 /Do#~f)% If T)nS ,[v1*
i~ <"r'_. (&'{/o°f.I) T'N.(fr./ O.ffJ~ f). . , . 7;, C.,lr)

•Ti r. :o([.-lowl] Ti 2 ,
K• (74)

T(. ') T , ",, (1V4 /Doeff .+t TO•) + ,, I ra 47r

(76) Tr 4

T'a, O (L4/,,JRJ ff aT N, ([9,wl~ R) T,0

(77) T.w -a, •T 4n R

Clearly a general solution of this system of equations is impracticable.

We therefore restrict ourselves to the case of small values of • using

the condition

(78) 1 (. /Doff) 1  D4o~ff)'

This is not really a new restriction since it is included in our assump-

tion of a strong radial dependence of the neutral gas temperature as

may be seen from our equation (66).

With equation (78) it is possible to develop all special functions occu-

ring in equations (72) - (77) and to neglect higher order terms. With

equation (66) and equations (72) - (77) we have seven simultaneous



equations for the quantities haln na 2  Tai* T 2 , To, 3 and Ad.

*: The quantities na, n 2 , Ta, T 2 , T and f define uniquely the

electron ter ip':-&ture r'd density distributions in the discharge. The

Squantities TO, f and 06 are also of interest with respect to our

application in the instability calculation of chapter (VIII).

With respect to the application in Chapter (VIII) we concentrate on the

calculation of the latter quantities.

We use the equations (66), (74 ) and ( 76 ) develop equation ( 66 )

and introduce it into equation ( 76 ). This results in
jo ([4v / t DF RI [soef]R).a2 (9

*.,.,u.)Ohffno U, E'

which together with

7."0 ,A O. )n, . L7T.7 (80)
A ,' 0#4 ,

defines T and @6• . These equations contain apart from T and g

the quantity E which we express by 0 according to equation ( 60).

We see from equation ( 60 ) that the quantity E varies very slowly

with A a and therefore we use the approximation

- E 8  ~.p xp(-p/E)(81)

where E is the longitudinal electric field oi the corresponding nornial5

glow column.

Then the two equations for T0 and 0a read

*L.,,- DO.n. E1 . (82)

and



. )/No ([,0 Dff)R)
(83) ,7' k .,P J U 1

e(/##ý#-)ODgnO eU ES k To J
T is the electron temperature in the normal glow column.

To calculate T and the electric field E, respectively oa we
0

would have to introduce experimental data.

However without detailed calculation the following general conclusions

can already be drawn.

Remembering that the right hand side of equation (83) can assume po-

sitive values only and that we should include the transition to the nor-

mal glow theory the inequality

(84) o, ( /Deff)2 R 5 2,4

must hold independent of the choice of the experimental parameters.

At least this is true within the frame of our approximations. It follows

that the longitudinal electric field component E differs only little

from the Schottky value E . With increasing particle number den-5

sity in the center there is a slight decrease in E.

With increasing discharge current the particle number density in the

axis increases slightly more than proportional to the current.

Equation (82) shows that the axial electron temperature T increases

with the particle number density in the axis and with the total discharge

current.

In judgement of our results let us'always remermber that we must ex-

clude small discharge currents due to our initial assumptions. Also

very large discharge currents are excluded since in this region the

glow model breaks down.
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C GLOW COLUMN WITH NEGATIVE IONS.

In this chapter we consider the

influence of negative ions on the -

normal glow column. Subject of

this investigation is therefore the

model described in chapter (VII A)

extended by the addition of a nega-

tive ion component.

Consequently we have the following

system of equations describing our

problem : rio. .sch....,.ti l .k.tch ., o.fk d. --,t.y d
I.epm.r.It. dimridiktom In Ak. Slow
column2 with nefalvelS' Ia..,

The particle conservation laws

(85)

the momentum balances

Di V ni t' e~i ri~ E* (86)

the assumption of quasineutrality

Sen 0 (87)

the condition of congruence

I0 (88)
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the neutral particle balance under the assumption of constant

pressure, weak ionization and small energy input

(89) 1n coas8

and the boundary conditions

(i for rn0 ri o for r R(9o) dr o Frro

Introducing equation (86) into equation (88) gives the radial electric

field

(91) Er e, n

and with that the radial particle current density

"ir•' -•'l" Vr Ai f 7l; Ok DhO, Vr niC
ar DiVr ni

(92) or

In the above equations the indices can assume the values

(e), (+) and (-) referring to electrons, positive and negative ions

respectively. We stress particularly that in this chapter - and only

in this chapter - the index (-) refers to the negative ions and

not tothe electrons.

For a three-component system consisting of electrons, singly charged

positive and negative ions the following processes contribute to the

net-production terms A
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Ionization of neutral particles by electron collision

0 (Eclp)(p/nnP) v.d nnln. (93)

Attachment of electrons to neutral particles

A,,- ( /p) (p/f .) v.d n% ", (94)

Detachment of electrons from negative ions by electron collision

Ac " ' Vejh1-1e (95)

Recombination of negative ions with positive ions

ad , 22 •th n.n_ (96)

From the equations (85), (87), (92) and (93) - (96) we derive the fol-

lowing simultaneous differential equations for the electron density ne

and the negative ion density n

dd, (0d, o buf., dn .
dr 

(98)

/.[ - '),.p- ,.o. 1

_dr 67.o.. (0& + ) .n -dn .
rTd r rn~ e/]2n dr (98

3*[ FS~ hf 2v."I , '• tv.,#,),,.] -0' 21 V1, ,.,.
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with the boundary conditions (90).

EVALUATION.am

We do not know of an electro -ne- V

gative gas which can be described

by a three-component system and E,

whose experimental data are suf- t,. 7, x .. .. , ,,,.,, p,,,...
h, night l M . i'. r" l I r p. I."

ficiently known. Therefore we have

to apply our calculations to a fic-

ticious gas. In this model gas we replace the various ion components

by one positive and one negative ion component with average parameters.

We will also choose the numerical values close to those known for oxygen.

For the evaluation we introduce the following abbreviations

XT/R Y/7&/o z n

(99)

A -l(PlR)vr1/po I jf(p.R)2 v [pD(T /T)]

and find

(100) X Yx ,2(.. ule)z dz A( v4P
*:#yiPZ., . _._ 4 . I, 6 ,,,1 2 P~'

and

(101) Tod-eY 2 /X

Srod Ved/ 17n P P O
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with the boundary conditions

±Y dz 0 for X 0
dx dx

Lao fr x-i(102)

In Fig. 7 the parameters entering equations (100, 101) are shown as a

function of E/p

The numerical values used for the coefficients are

1S * 10fc ) a 1/A .2 (103)

" 1o"[c] T 7 T. T,. ['OK

The system of differential equations (100,101) was solved by an appro-

priate approximation procedure with the help of a digital computer.

The results are shown in Figs. 8-11.

DISCUSSION.

The parameters of our calculation are n eo/nn and E/p.

The solution of the eigenvalue problem produces the product of the

total current with the pressure, Ip , and the product of the discharge

radius with the pressure, Rp . The corresponding relations are shown

in the Figs. 8 and 9.
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%.A.Wj 4 4111)" knf~v

2.0-

Jr.2

-S

flu* 14: M.'I.,In,'r i1g. I voia.l•*saJ y l' hg / I .1 .I tU~aalIIW Fig. 9,11 W.E'h u J gl tcu~m • t•¢lg (101(d LIp OS 0 lUnchhutf f

o( £hcep. ix .rroo,,t.*lI p•..r..n,•.l*.r HIs .lp10 pI. ii, Ii thI. 0M7,i,~t.pnial pafanl~u.Ire f ;,nd pI.
nc. lI r.i I a.' il,,.. dLily.

Together with the eigenvalues Ip, Rp the evaluation of the problem

produces a 2-manifoldness of radial electron density distributions.

We normalize these distributions using y = n e/neo and x = r/R.

We further introduce the relative

halfwidth h/R as a characteris-
tic parameter. Then we find that 0-6,

0.57
Y 0.50

curves with the same constrictiona4
0.5- 0.43

parameter h/R show practically %40

0.33
the same radial dependence. Con- 0.-

0.26

sequently our 2-manifoldness is

reduced to the 1-manifoldness 0 LU

s h o w n in F ig . lo . Fig. Jo, N om,. , ...:y dist, iut ions. N/
is ths constriction ;r ... I�.

The electron density distributions may therefore be characterized by

the constriction parameter h/R only. In Fig. lo we have given this

typical parameter as a function of the experimental data Rp, Ip.

The range of the experimental parameters Rp, Ip is limited by the

assumptions underlying our model. Since in a collision dominated plasma

the mean free path of the carriers has to be much smaller than the



dimensions of the vessel it fol-

lows that we have a lower limit

for the product Rp, which is

indicated in the dotted line in

the Figs. 8, 9, 11. An upper

limit for the product Ip is -0-
required by our assumption of 1

constant temperature. This p. i m: .* .t. •:.. pamot,&,h/a p * .

upper limit is found from a

careful consideration of the energy balance and is approximately

identical with the largest value shown in Figs. 8, 9, 11.

From the Figs. 8-11 the following conclusions may be drawn:

A negative ion component can cause remarkable constriction of the

positive column.

For a constant value of Rp the constriction increases with the cur-

rent as shown in Fig. 11. The constriction is more pronounced in the

range of small Rp values and practically negligible for large Rp

values. For constant current the constriction increases with pressure.

The characteristic (E-I) of the column can be found from horizontal

intersections in Fig. 9. It shows a negative slope. This effect in-

creases with decreasing discharge radius.

We stress particularly the fact that the constriction effect calculated

above is nonthermal. By this we mean that within the range of our

experimental parameters the assumption of constant particle compo-

nent temperatures across the whole discharge is valid. If we would

proceed to larger values of Ip the neutral gas temperature develops

remarkable radial dependence and with that also the electron tempera-
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ture becomes a function of the radial coordinate. By the same token

the production coefficient increases in the center and decreases to-

wards the wall. These effects may cause an additional constriction.

We described the influence of the thermal effects in the preceding

chapter (VII B).

It is interesting to note that already Gfinthe r s chulz e , Se e li g e r

and Sommermeyerr expected as one cause of the constriction

process the presence of negative ions and Giinntherschulze

formulated in this connection the concept of the "ion shield effect".

D THE WALL DETACHED GLOW COLUMN.

The preceding calculations of

the glow column are distinguished

by the underlying physical model. ,

"They have in common the asump-

tion that at the wall the S c h o t t k y

boundary condition is effective. I

We discussed already in chapter

(VI) that this boundary condition

may be rendered ineffective. For

instance there can be a competi- -
•, ~~~~ris. 12s schemulcal aklck~ f the de*eity -ad tirete ealr

tive selecting mechanism - like di.,,i . la the l ,. ... n.l.. Nd I- m.

for instance gas convection - which :...". .

renders the simple particle balance

(38) invalid. Or even the statistical fluctuations of the system may be

sufficient to outrule S c h o t t k y b condition if the particle current den-

sity - that means the gradient of the particle number density - has

become sufficiently small in the neighbourhood of the wall. In the first

case the solution is selected by the new dominating mechanism which

may be taken into account by a new effective boundary condition. In



the second case the solution must be determined from stability consi-

derations.

If the boundary condition (38) is not effective any more but the glow

approximation is still applicable then we call the system a wall de-

tached glow column.

Let us consider a discharge volume in which the glow approximation

is applicable and let us increase the diameter of the discharge vessel.

Then - keeping the total current constant - the particle number density

and the importance of the divergence term will decrease and we will

reach a limit where volume recombination and electron attachment be-

come important. This effect will first come into play in the outer re-

gions of the discharge. It is not our intention to present here a calcu-

lation of these volume effects. Fortunately we can refer the reader

to the preceding chapter describing the glow column with negative ions.

Here particle attachment and volume recombination is an important

phenomenon. The numerical evaluation of the equations of this chapter

showed that with the increasing contribution of these volume effects

the gradient of the particle density decreases rapidly near the wall.

This is just the effect which renders the Schottky condition invalid

and causes wall detachment.

E WALL STABILIZED ARC COLUMN.

In the preceding investigations we applied the "glow approximation".

The case of the wall stabilized arc column is characterized by the fact

that the "arc approximation" described in chapter (VI) is applicable

throughout the whole cylindrical discharge volume.



Equation (32) provides three relations for the energy balance of elec-

trons, ions and neutrals.

"Assuming stationarity, quasineutrality and equal temperatures

ST = T = T the first term on the left hand side and on the
+ - n

right hand side of equation (32) vanishes. Multiplication by m/2

and addition results in the relation

(104) - r T ' -- (r Uir) +.5

Here the extensive quantities without index describe quantities summed

over all particle components. For instance the quantity S represents

the radiation of the neutral particles, the electrons and the ions.

is the total heat conduction coefficient of all components. The first

term on the right hand side arises from the ambipolar diffusion of

ionization energy. Diffusion of excitation energy is neglected.

We have further from equation (31) the momentum balances

(105) eu. n eO. 7n

(106) -. n E,,°E -eO, Vn

The neutral particle momentum balance and conservation law will

be replaced by the relation

(107) Iln k Tn " p , const.

due to the assumption of constant pressure and weak ionization.



We further have the two particle conservation laws for electrons

and ions. However with our assumption of quasineutrality and the

basic concept of our arc approximation we may use instead of the

particle conservation law the charge conservation law

o (108)

and the Saha equation

=2t(kMT)•(ZI-)I exp / ) (109)n gh t 2" kr

Further Maxwell's equations provide the relation

E 7 - '7U (110)

The equation

defines the deviations from quasineutrality and is only of interest for

higher approximations.

Altogether we have six unknown quantities

UE,•- },n., T (112)

and the six equations (104-106) and (108-110), assuming that the radiation

term S in the energy balance is expressed by the variables n and

T. The form of this relation depends on the state of the plasma, in

particular on the question whether the plasma is opaque or not. Since

we are considering a cylinder symmetrical problem it follows from

(108)

i
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C
(+13

where the constant C must be identical zero since the sum of the

radial current densities should be finite in the axis. By elimination

of the electric field the momentum balances (105, 106) provide for

the radial particle current density the relation

(4 dn
(114 ,-r e Dmdr

and for the longitudinal components

(e11 E5 )1 n Et

Introducing the radial current density and the longitudinal current

density into the equation (104) and remembering that the longitudinal

component of the electric field E is constant due to M ax w e l l' s
z

equations, we arrive at

(116) r /" ( r),

This equation (116), the Saha equation (109) and the function S (n,T)

"expressing the radiative losses, determine together with the boundary

conditions the temperature distrib.ution in the wall stabilized thermal

column.

As boundary conditions we have due to symmetrical reasons and accor-

ding to equation (44)

(117) ,' 0 for r" r Tw for r R

i



The equation (116) is still very complicated. A simplification can be

reached by neglecting the influence of the ambipolar diffusion of ioni-

zation energy in comparison to the normal heat conduction.

Then we have the E 1 e nba a s He 1 Ie r differential equation

r (rA wr)+e (/4. _)nE, (118)

The formulation of the radiative losses requires further discussion.

Under the assumption of a transparent channel we would in princlpal

have to sum over all emissions of all lines and the continuum. This

is a too difficult problem. The usual procedure therefore replaces

all levels by one effective energy and writes the emission in the form

3 r)w(A/T)e.YP[- edoJ (119)

where A is proportional to the pressure and the average transi-

tion probability.

With increasing energy input the contribution of the continuous radia-

tion becomes more important. Consequently the average energy level

in our formula (119) rises.

If one increases the energy input even further one reaches the region

in which the channel is still transparent but the contribution of the

discrete spectrum is negligible in comparison to the contribution of

the continuous spectrum. In this region we can describe the radiative

loss by

S (T) g (120



with

(121) 00 36 10 (AC T)

and h. 'g characterizing the energy interval near the ionization

boundary through which the energy levels may be considered "smeared

out".

Depending on the situation we introduce either (12o) or (119) into (118).

Then we have together with the boundary conditions (117) an eigenvalue

problem which provides the temperature distribution and the correspon-

ding eigenvalues of the longitudinal electric field E .
z

One can reduce this eigenvalue problem to an initial value problem

by using the coordinate transformation

(122) - k T r(ia)"t" a Ui ; Y 2"

which leads to an equation of the form

(123) * __L (V

with the boundary conditions

C.
(124) (CYJI ju, 0 o, y. '

Here the symbols Cl' C 2 9 f1 and f have the following meaning

(125) C, EZ R 'p h C& I p R.., Ak

(1a6) fR) a xP 112' / (t) G



Now, assuming an initial value of '3' and choosing the ratio

C2 / C 1 we can integrate down to the value 3'Ys 0 and find a

corresponding value of YR" This value defines the value of the

constant C 1 through equation (124). Since we have already chosen

the ratio of C 2 / C1 both constants C and C2 are defined. From

these two relations we calculate

with equation (125) the experimen- 7

tal parameters Rp and E . The f.9 04
z S

current can be calculated from the

temperature distribution using the 0's -CYC'.0

S a ha equation and the mobilities - S

for the electrons and ions. - 8.6

The considerations sketched above

have been carried through by W e i - -

100
z e I a n d S c h m it z a n d Fig. 131 Typi so.sp.,..,.... d,.b.•.t•.. ,..

th. wall *tab. 1-dd arc f77 . The me..
5 0 n-ng .( the aynbol. .. raplaind in the

Koch, Lesemann, Walther .

Some of the typical results are shown in Fig. (13).

Moreover it is possible to define from equation (123) similarity laws

and draw general conclusions with respect to the dependence of the

discharge qualities on the experimental parameters. Within the frame

of our investigations here we cannot consider these details.

One more word about the radiative loss. If the channel of the wall-sta-

lilized arc column is not transparent then the theoretical description

of the radiation becomes extremely complicated due to the absorption

and reemission processes. We do not know of any theoretical treatment

of this problem.



F WALL DETACHED ARC COLUMN.

In all modes treated so far either the "glow model" or the"arc model"

was applicable throughout the whole discharge volume. Only a very

small region near the walls - order of magnitude of the mean free path -

was excluded. The qualities of the "sheath" were only of interest for

the boundary conditions.

The wall detached arc column mode -which we investigate here - is

characterized by the fact that both - the arc and the glow model -

are of importance.

To understand under what conditions this wall detached arc mode occurs

let us consider the following picture.

We chose a value of the axial temperature T and the eigenvalue
0

E . Since per definition the arc model holds near the axis we canz

find the temperature distribution

by integration of equation (118)

atarting with the boundary value -, t4,9

dT/dr = o and T = T at r = o.I

The corresponding density is I

given by the Saha equation (109).

This integration may be carried

out down to a limiting value r = r -
c

at which our arc approximation

breaks down. The value of r can
c

be found from the condition ( 132). 0 L -

rVi. 141 scIek atlac. sk.tek of the des.a.y tad
We now discuss the possible solu- .".riteWe n w dscu s te po sibe slu-vJ|dolcked arecolum•. r. *op@.

rates the .. d.l r.pien of the are op.
praImaiim (Me) ("am 1,ta of A.* 410.

tions which can exist for the summed apeini|n(M,).

eigenvalue Ez and the axial tempe-

rature T
0



If R • r then the arc approximation holds throughout the whole

discharge vessel. We have a wall stabilized arc column. A solution

exists if the temperature of the wall T is identical with the tempe-W

rature calculated at the distance r = R. T = T(R).W

If the discharge radius R is larger than r our arc model breaks
C

down at r and a different model must be used in the outer part of
c

the plasma column.

This is the glow approximation which is complimentary to the arc

approximation.

Naturally in the environment of r = r there is a transition regionc

in which none of the two models is applicable. The general difficulties

of such transition regions have been discussed in detail in FTR 1. In

accordance with the general use we replace here also the transition

region by appropriate boundary conditions. To secure finite current

densities and finite sources we have the necessary conditions

dna d r rT
9 - nf g dr dr a dr dr

at r= r.c

The connection of the arc approximation with the glow approximation

via equation (127) defines together with the boundary condition (39) one

and only one value for the discharge diameter 2R in the range R - r .c

Our conclusion is therefore:

If R 4 r holds we have a solution with T and E for any valuec o z

of R assuming that we can still choose T . Should however T be
w" w

prescribed then there is only one or no possible solution.
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If R • r then the boundary condition (39) allows only one value of
C

BR for the given values T and E . However this latter statement
0 z

should be carefully used remembering the discussion of chapter (VI c).

There it was stated that for small gradients dn/dr condition (39)

may be rendered ineffective. Other influences may become effective

and determine R or - if statistical fluctuations prevail - all values

of R are possible and stability criteria select the observed mode.

Under these aspects it is of particular interest to see if dn/dr de-

creases for the wall detached arc column and if the solution for the

thermal nucleus is only little influenced by the position of the wall.

The precedi'ng general considerations are formulated in the following

calculation:

For the calculation of the thermal nucleus we use a simplified form

of equation (118). We neglect the radiative losses. The temperature

dependence of the production term via the S aha equation suggests

- as in the case of the normal glow column - the representation by

a step function. The position of the step is characterized by r 1. In

the range o - r 4 r1 the production term is constant. In the range

r 1rl r 4 rc the production term is zero.

These are serious simplifications but they do not affect the general

conclusions we want to draw.

The quantity r1 is defined by K 2 k t2

or _o Wi • -, 4 <<.
A 4 ,kT/

For reasons of finite energy current density and finite energy sources
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the steadiness of the temperature and the temperature gradient dT/dr

must be required. The the temperature distribution

Ta r.i-.& f)2J for r''&
r 

r

r- fo r.~r(129)

follows.

The S ah a equation determines the particle density

K -Kexp f r, (1S JJ for r r

n . Ke f L f) for (130)
z' kT,[ r

From our criterion for the validity of the arc approach ( 45 ) the

critical density

" " 0e (131)

defines the radius r to be
c

I* 4t (132)

In the region r - rc where the glow approximation applies we remem-

ber that the specific particle production is small in comparison to the

net production in the arc center of our discharge. Consequently we neg-

lect this contribution. Then we have, using condition (127) in the region

r ; r , the solution
c



(133) n•
k r.

Condition (39) determines the value of the discharge radius R

(134) Rtr, exp f [K-

Two quantities are of particular interest. The one is the derivative

dR/dTO given by

(135) d, r. 2j 0; hnf)

and the other the derivative (dn/dr)R given by

dn j a s -

(136) dr - R k To
orR

From equations (135) and (136) certain interesting conclusions can be

drawn.

Let us first assume that there are no effects like convection, volume

recombination or external fields which could render the Schottky

condition invalid. In this case the wall is the stabilizing influence and

the discharge is definitely symmetrical to the axis of our discharge

vessel. Equation (135) shows that under these conditions the axial tem-

perature T and with that the profile of the thermal nucleus is only

weak dependent on the diameter ZR of our discharge vessel. Since

the thermal nucleus determines the observed phenomenon, this pheno-

menon is practically independent of the size of the discharge vessel.

Then from equation (136) we can see that the gradient (dn/dr)R

is small. Since in many discharges we have additional influences like

volume recombination, convection etc., we can expect that these effects

........
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render the S chottky condition (39) invalid. Therefore the thermal

nucleus of the discharge is not forced any more to occupy the center

of our discharge vessel but under the influence of other effects may

show a different geometrical shape.

Even if the latter case occurs the conclusion that the axial tempera-

ture and the temperature profile is little influenced by the parameter

R will still hold in a good approximation.

In summarizing:

Our calculations show the existence of the "wall detached arc mode".

If the boundary condition (39) at the wall governs the solution we

find that the discharge body is axially symmetric and that the maxi-

mum temperature T is rather independent of the diameter of the
0

discharge vessel 2R.

We further recognize that for the wall detached arc mode with increa-

sing R the boundary condition (39) may be outruled by other influ-

ences like convection, external fields, volume recombination etc. In

this latter case the geometry of the wall detached column is not defined

anymore by the presence of the wall but by the qualities of the stabili-

zing influence. If the stabilizing influence shows assymmetric features

then the geometry of the wall detached arc column will be assymmetric.

In this latter case too the axial temperature and the thermal profile

of the nucleus of the wall detached arc column should be practically

independent of the effective diameter of the stabilizing influence.

It is often quite difficult to relate experimental observations to theore-

tical modes. Experimental and theoretical knowledge may be incom-

plete. Also there are frequently non-typical cases.
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For the wall detached arc column however there are obviously cor-

responding observations.

S eeli g e r 78 described for the first time the continous change

from the wall stabilized glow to the wall detached glow and the dis-

continous change to a mode which he called "Schlauchentladung" and

which might correspond to our wall detached arc column. Similar

observations with careful experimental study have been carried out
19, 26, 27, 28, 68

byEdels, Gambling andPrice They

find that the highly contracted - our wall detached arc column -

appears at a certain characteristic gas temperature.

The most recent results follow irom the very interesting investigation

of Kenty 45,46,47 He finds that under certain conditions his

diffuse "normal S chottky mode" changes discontinously to a very

narrow "filamentary discharge". This filamentary discharge shows

all the qualities which -*e have described here for the wall detached

arc column.

(A temperature difference for electrons and ions is not principally

excluded in our arc approximation or for our wall detached arc column).

Ia

vie.BI lb U S m) dll i. s•ega UI - K |41.
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The investigations of K n ty prove that the thermal nucleus of the

wall detached discharge may be displaced within the container without

difficulties by very small forces. The position, the length and the form

of the discharge is a very uncertain one. Kenty has shown that convec-

tive forces are able to elongate the discharge column extensively and

even to push it into small extensions of the discharge vessel. Also he

observes that the discharge column forms a little arch at the side of the

cathode due to the upward convection of the gas.

G CATHODIC PART OF THE ARC DISCHARGE.

In the calculations of the s-modes of the column presented in the pre-

ceding chapters the governing boundary condition defined the symmetry

of the model regions. For the cylindrical column therefore all model

zones showed cylinder symmetry.

Only in the case of the wall detached arc-mode we pointed out that if

the stabilizing influence of the wall is outruled, the geometrical shape

of the thermal nucleus of the wall detached arc column is not defined

by the geometry of the wall and may show various forms. Which of

the possible geometrical forms we will observe depends on the presence

of another stabilizing influence like e.g. external fields, convection

etc. or on the stability qualities of the s-mode. In this respect we refer

to the investigations in chapter (VI C) and (X).

In more general terms we can say that in the case of the wall detached

arc column the discharge volume does not prescribe the interface so-

parating the two model regions of the "arc approximation" and the

"glow approximation". We rather have a whole continuum of stationary

modes of different geometrical form. Which of them is realized in a

particular experimental setup depends on influences not included in the

calculations of chapter (VII F). Either we have strong additional stabi-

liaIng factors or the observed mode is selected by stability principles.A4
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We are confronted with exactly the same problem in studying the

possible s-modes in front of the electrodes of an arc discharge.

Here the existence of more than one model region with the uncertain-

ty of the interface is not the exception - as it was in the case of the

wall detached arc column - but rather the normal form.

Approaching the electrode, the conditions change from those pre-

sented in the undisturbed column into those of the inertia limited

region immediately in front of the electrode. Consequently we have

in the electrode region always several model regions seperated by

interfaces.

The geometrical form of these interfaces are in principal again defined

by the boundary conditions. However we have now two competitive con-

ditions, one from the electrodes and the other from the walls. In cer-

tain regions they counteract each other and reduce the stabilizing ef-

fect so that statistical fluctuations can render them invalid. This

leaves the geometrical form of the model undefined and allows the

existence of a whole manifoldness of s-modes.

In an earlier treatment of the electrode components of the arc discharge

FTR I 1 we have distinguished three model regions in front of the cathode.

The first region was the "contraction region" which extends from the

undisturbed column down to the beginning of the inertia limited region

in front of the cathode. Within the contraction region the arc approxi-

mation holds. It is similar to the nucleus of the wall detached arc column.

An the name suggests the contraction region is not of cylindrical shape

but describes the area in which the diameter (2R) of the column con-

stricts to the value (2R e) in front of the electrode. The geometrical

shape of this contraction region as well as the parameter of the end

contraction Re are not prescribed by the boundary conditions due

to the arguments stated above.
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The second model region is the inertia limited zone in front of the

cathode in which the charged carriers move according to the laws

of the free fall.

Finally the third model region is the whole rest of the discharge

volume between the interface of the contraction and inertia limited

region on the one hand and the walls and the electrode surface on the

other hand.

* In the preceding report we have discussed in detail the qualities

of the contraction region and the inertia limited zone. This can be done

without specifying the laws within the third regions. The details of

the calculations are not of interest here. But there is one essential

result which relates to our present consideration.

We stated above that we expect in front of the electrode a whole mani-

foldness of s-modes corresponding to the possible geometrical shape

of the interface between the contraction region and the external region.

Since the conditions immediately in front of the cathode are not deter-

mined and influenced by the cylindrical walls a circular onset might

in principal be just as possible as a quadratic or an elliptic onset.

Moreover we could imagine that a stationary mode exists with more

than one circular cathode spot or even with cathode spots of different

values of end contraction meaning that the cathode spot area might be

characterized by a set of end contraction parameters I/Rol

Furthermore the shape of the interface connecting the column with the

cathodic onset could show various geometrical forms.

Our ii.vestigation in FTR I pointed out that this latter influence of the

geometrical form of the contraction region is of little importance for

the stationarity condition in the cathodic and anodic area of an arc dis-

charge.
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The situation is however quite different with respect to the pattern

of the end contraction. Unfortunately the calculations are so extremely

involved that we could follow up only the case of a spherical single type

cathode onset. Therefore we have only one parameter of end contrac-

tion l/R . We investigated the possibility of stationary modes within

the range 1 4C R/R .e 00 . We found that depending on the experimen-

tal parameters stationary modes may be expected in all ranges of the

parameter 1/Re and we distinguished three different modes according

to the physical mechanism governing the current continuity in the

inertia limited region.

There is a thermal spot mode. In general the thermal mode occurs in
the range R/Re m I. Under these conditions the energy transport

e

from the arc to the electrode is large. It is based on heat conduction,

ion bombardment and radiation. The electrode is on high temperature.

The gas temperature differs only little from the electrode temperature.

The process governing the condition of current continuity in the inertia

limited region is the thermal electron emission from the cathode surface.

Due to the high temperature and the moderate current densities this

process is able to provide the necessary particle current component.

For the same reason the influence of field emission or more exactly

temperature field emission (T-F emission FIRI) is only of little im-

portance. Also the ion component, flow from the gas to the cathode

surface is small due to the small gas temperature.

The second mode is the "combined spot mode (II)". This mode occurs

in the range of medium values of end contraction. It is characterized

by the fact that the combined action of electrons emitted from the ca-

thode as well as ions coming from the gas governs the current trans-

port in the inertia limited region. The electrons may be deliberated

from the cathode by the temperature effect or by the influence of the

electric field. Also it is quite possible that the process of individual

field emission is of importance. Due to the increase of the contrac-
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tion parameter R/R 0 the gas temperature in front of the electrode

can be much higher than the temperature at the electrode surface and

results in a markable ion component flowing from the gas to the cathode

surface.

The third mode is the "field mode (III)". This mode occurs with extreme

end contractions. The electrode temperature is small. Due to the high

current densities a strong electric field at the cathode surface exists.

The process of field emission - in particular the I-F emission - is

operating and provides large electron emission currents. The gas tem-

perature in front of the electrode may be high but the ion current conv-

ponent is nevertheless small since the contact area is so extremely

small.

It is necessary to distinguish two different types (IIIa) and (IIIb) of the

"field mode".

In the case lila the field at the cathode surface is produced by ions

which originate at least partly from thermal means. With other words

the ion saturation current flowing from the hot gas region in front of

the cathode to the cathode surface provides an essential part of the ion

current necessary to build up the cathodic field. Such a process is

according to the calculations in FTR I definitely bound to the condition

that the radius of end contraction is much larger than the mean free

path of the ions A,

For the mode IIIb the thermal ion component flowing from the gas to

the cathode surface is altogether negligible. In this case the ions

necessary to produce the electric field at the cathode must be created

by the electrons coming from the cathode. Unfortunately with the small

cathode drop and the corresponding small ionization ability of the elec-

trons the number of ions produced by a single electron is very small.



In fact we require - due to the energy balance - multiple ionization

processes to produce an ion. Consequently the ratio of the electron

current to the ion current density j_ / j+ must be a very large one

if the discharge is to operate in the IIIb mode. This field mode IIIb

is what was originally understood by the field emission process at

the cathode of an arc and was already criticized by C ompton.

One can see from Fig. Z of FTR I that it requires current densities
9 2

of extreme values (order of magnitude 10 amp/cm ) or the presence

of processes favouring electron emission.

We emphasize that the various modes are possible depending on the

experimental parameter. The essential result of our calculation in

FTR I was however that for a fixed set of experimental parameters

the number of possible stationary modes - characterized by our

contraction parameter R/R - was quite restricted. The solution of
e

the stationary equations of our problem did not allow all possible

values of end contraction R/R , but only a certain set which could be

determined by the so-called "EXISTENCE DIAGRAM". Such a diagram

defines the possible stationary solutions from the intersection of two

curves representing the ion saturation current and the ion defect cur-

rent. The points of intersection are called POINTS OF EXISTENCE

(E-POINTS) and determine those values of the parameter R/R whiche

correspond to the possible stationary modes. In general such an existence

diagram can have up to four intersection points. But there may be also

one or even no intersection points within the range of the stationary

modes I, II, and III.

This result means that we do not have - as one might expect - a con-

tinous manifoldness of s-modes for the cathode spot onset. The result

also explains the phenomenon of constriction of the arc in front of the

cathode. It explains moreover the existence of certain critical pressure

and current values (p c, I ) in very satisfactory agreement with ex-

perimental observations.
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In conclusion then we state that in front of the cathode of an arc dis-

charge we have in general a finite number of possible s-modes. For

the case of a circular single type onset we have four or less than four

of such modes. Whether other multiple spot modes or modes of diffe-

rent geometrical shape may exist in front of the cathode hitherto has

not been investigated. Butthere is no doubt that other modes of that

type exist. To prove this we show in Fig. 16 pictures of several modes

of high pressure mercury arc discharge which exist for exactly the

same values of external parameters and were observed to change from

one into the other without any change in the external parameters.

a b

rig. l6b Example for the different aPs modes.

t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___
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H ANODIC PART OF THE ARC DISCHARGE.

It is one of the satisfactory features of our theoretical picture about

the electrodic parts of an arc discharge that it does n o t underlie

different concepts for the cathodic and the anodic region.

The basic mechanism which uses only the well known classical phy-

sical laws applies as well to the anodic region as to the cathodic

region. The difftrence observed in front of the anode in comparison

to the cathode can be caused only by quantitative differences in the

parameters entering the calculations. There are essentially two of

such features.

One is the lack of an anodic emission process corresponding to the

emission from the cathode. (We restrict here from the special case

of the B e ck -arc where we have an ion emission component).

The second feature is the difference in the mass of the particle com-

ponent providing the saturation current flowing from the gas to the

electrode. In front of the cathode this component is carried by the

ions. In front of the anode by the electrons. For corresponding con-

ditions in the end contraction region the saturation currents flowing

will show the ratio

(137) " /M.

It is possible to explain the principal differences between the cathodic

and anodic parts of the arc with the help of this simple relation. We

refer to the difference in the end contraction at the two electrodes and

the so-called micro-spot mode.

Concerning the details of the calculations for the anode onset we refer

to FTR I. The basic result is again - as in front of the cathode - a
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limi t e d number of s-modes. For the single circular type onset we

have four or less than four possible modes. Whether for different onset

pattern of multiple structure and noncircular shape additional s-modes

exist has never been investigated theoretically but as in the case of the

cathode onset there is experimental evidence for this fact. (FTR I).

I CATHODIC PART OF THE GLOW DISCHARGE.

The "glow approximation" and the "arc approximation" described in

chapter VI was used to distinguish the various s-modes of the arc and

glow column. They are also characteristic for the distinction of the

electrodic parts of the glow and arc.

The electrodic parts of the arc are described in their main body - the

contraction region - by the assumptions underlying the arc approxi-

mation. There is a direct resemblance to the theoretical description

of the wall detached column. The electrodic parts of the glow on the

other hand are governed by the approximations characteristic for the

"glow approach". At least this is true as far as the particle conser-

vation is concerned. With respect to the energy balance there are

certain differences.

We use two experimental parameters to characterize the cathodic

part of the glow discharge. One is the extension 1 and the other the

total voltage drop U . We also assume that we can treat our problem
c

one-dimensionally. This latter assumption does not exclude a radial

limitation of our discharge area but assumes only that the radial in-

fluences are negligibly small.

Our interest is here focussed on the question what stationary modes

may exist for a given set of experimental parameters U , 1.C
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First of all we have to distinguish between two principly different

kinds of s-modes depending on whether the electric field through

the distance 1 is approximately constant or shows a distorted

shape due to the presence of space charges.

The first case occurs in the range of small current densities. Here

we have only one model region. The requirement of particle conser-

vation has the simple form

(138) "dli-

Here is the production coefficient per cm and no volume recom-

hination is assumed.

The integration oi this equation gives the current density of the

electrons at the anodic end as a function of the electron current

density at the cathode surface in the form

(139) u" (O) *XP(Jcf i(S)dS

Due to the current continuity the ion current must be given by the

formula

(140) ( Z,) " it (0) " .(0) exP-ipf 46,(• d,. ]

0

If we assume that no ions enter the anodic end and use the cathodic

boundary condition that each ion at the cathode surface deliberates elec-

trons according to the relation

(141) 0o) " • .4 (o)
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then the well known stationarity condition of the Towns end discharge

results

d

r - exp j.6(1)dSj 1) (142)

This is one possible s-mode for our cathodic region characterized by

U , 1. In fact it does not describe only one mode but a whole seriesc

of modes since the parameter j does not occur in the stationarity

condition. Therefore for a discharge with a given total current the

radial extension is still a variable parameter. The condition is that

the current density does not exceed the limit prescribed by the space

charge effects.

tF If this last condition is not met then we approach a completely diffe-

rent type of cathodic mode. This new type of mode is characterized

by the fact that the Poi as on equation causes a strong change in the

field distribution. To describe this s-mode we must distinguish three

different model regions.

The first one is the so-called cathode fall region (CFR). In this area

we find practically the whole cathode fall U . The electrons move fromc
the cathode through the cathode fall region producing in a rather strong

field additional electrons and ions. At the end of the CFR the electrons

- at least a large portion of them - is in a "runaway state ,"l6b We

stress that for the existence of the glow cathode mechanism described

here the production of electron-runaways is decisive. The ions produced

in the CFR move towards the cathode, bombard the cathode and liberate

electrons. But not only the ions produced in the CFR reach the cathode.

There is also an ion component entering the CFR from the neighbouring

model zone. The so-called negative glow region (NGR). On the other

hand electrons coming from the CFR enter the negative glow.



The second model zone is the negative glow. Here the electrons

from the cathode fall have beam character and enter the negative

glow region with a certain initial energy. In passing through the

gas they produce secondary electrons and ions which leave the nega-

tive glow by ambipolar diffusion. Within the negative glow area we

have hardly any electric field. Also the space charge is negligible.

As we know from experiments there are three energy groups in the

negative glow. The primary electrons which have the properties of

a beam. The secondary electrons with an average energy of order

or magnitude 5-10 eV. These are the particles produced by the

primaries. Finally the dominating "ultimate electrons" which have

low energy and show practically a Maxwellian velocity distribu-

tion.

The third model region is the Faraday dark space. Here the produc-

tion of particles is practically zero. The runaways from the CFR

have been broken down in the negative glow. Only secondary particles

diffuse through the cathodic end into the Faraday dark space. There

is no carrier production and no carrier destruction in the Faraday

dark space. All particles diffuse in the axial and radial directions

and are destroyed by wall recombination. There is little electric

field.

To find the stationary modes possible within the frame of these model

regions we construct as in the case of the arc an existence diagram

plotting the extersion 1 on the abscissa and the voltage U on the
c

ordinate. (See Fig. 17).

The stationary states are governed by two relations (FTRII). One is the

Poisson equation integrated under the assumption n+ n

It gives

I ,,, ~ . . . . . . .. . .. .
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d( P )( - Je, e (r) MdS d?]t(143)

where d is the extension of the CFR.

The other is the stationarity law which we find from a calculation

similar to that for the Townsend discharge (142) but now limited

to the extension of the CFR. The only difference to the Townsend

calculation is that we now take into account the possibility of an ion

component flowing from the negative glow to the CFR. This provides

the boundary condition

~ d j.(d) (144)

Under these circumstances we have the stationarity condition

!, 0

Let us draw attention to the fact that our existence diagram here has

quite a similarity to the existence diagram in arc theory. Our sta-

tionarity condition (145) describes nothing else than the current con-

tinuity in our glow discharge. Just as the existence diagram in the

case of the arc was based on the current continuity requirement in the

inertia limited zone.

Fig. 17 shows schematically A-curves and B-curves. The A-curves

correspond to the stationarity condition (145). The parameter for the

curves is the value d/l. The thin lines correspond to the Poi 9 s on

equation after eliminating the quantity d with the help of the sta-

tionarity condition (145). The resulting law is independent of 1 and

consequently is represented in our U - 1 diagram by lines paral-
C

lel to the abscissa. The parameter of the B-curves is the current

density j.
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Any point of intersection

of a B-curve with an A-

curve is a possible mode

(point of existence) for

the values U and 1.

The parameters d/l,j

are defined by these in- Un

V tersection points. That

means for a given total

current 3 with j the

radial existence of the Fij. I?, 3.dIagV, ,k. ,,...h.,,,,,

discharge is defined.

Our existence diagram is quite revealing. It not only defines the pa-

Xi rameter values of j and d. It also shows that there are areas in

which no modes of the present type exist. In the Fig. 17 we have in-

dicated these areas by I and II. The existence of I explains the

phenomenon of a certain minimum current density which is required

for the cathodic part of the glow discharge. It also explains the exis-

tence of a certain minimum voltage, which is well known. The exis-

tence of the region II corresponds to the phenomenon of the obstructed

glow discharge. It shows that below a certain extension dn of the

cathodic discharge parts the minimum voltage increases with decrea-

sing value of 1. This too has been observed.

Finally we have indicated in our existence diagram Pa s c hen's law

which corresponds to the T owns e nd mode described above. (As).

Our existence diagram gives the following results. There is a certain

area of the parameter values U - 1 in which no stationary modes
c

of the glow discharge type (CFR, NGR, FDR) exist. Then there is an

area of U - 1 in which we have always a stationary mode but only
c

with a definite value of the parameter d (extension of the CFR) and a

.-i-.
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definite value of the current

density j ( radial extension

of the discharge for a given

value of the total current, J). ' \ t

In the same region there exists i _

for any value of U respective-
C LI~

ly 1 also an additional mode

which has only one model

region and an undistorted elec-

tric field - the T ow nsend Fil. ii, Voltau. current 4lnnty ch. actoboitic for different valw.. in.

cludint Iholrownuon, noronul and nanoinmal glow tregim.

mode.

So far we have discussed the question of stationary modes using

U 1 as parameters. It may be desirable to consider the same
c

situation using U and J. To find these results we may first take
c

from Fig. 17 the cathodic voltage drop as a function of j. This is

demostrated in Fig. 18. As this

figure shows for j V- j we
n

Shave an increase in U with the
c

Scurrent density which corresponds

to the anomalous glow discharge.

For current densities j e j
n

we are in the region of the VC

Townsend discharge where the

space charge is neglected and

consequently the voltage is inde-

Spendent of the current density. .7

Then however in this region there
is an influence of the parameter rfl. 19 c v uro.. t c.,t.fltl i,,. ot.f.different.,octho. ecoverg. in.

c, €udinl T. towned. a lo w **nlOtd.A

I due to the stationarity condition

and consequently a splitup of the
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characteristic in several branches. The continous transition from

Towns end to glow discharge shown in Fig. 18 is due to space

charge effects and cannot be taken from the calculations presented

above. Again we have the problem of a transition region.

Now from Fig. 18 we may derive the desired characteristic U - J.

We introduce the relative cathodic area covered by a discharge cross

section , = F/F (Fc = cathode area) as a parameter and draw
c c

the corresponding characteristics as shown in Fig. 19 . The para-

meter ,I I has a lower limit determined mainly by the influence

of the radial effects, which is indicated in Fig. 19 by the upward shift

of the corresponding (?J "-J).) charact'eristics. Obviously there is

no unique relation between U and J in Fig. 19.

We may therefore conclude:

There exists a whole area U and J where we have no stationary
c

solution of the Townsend or glow discharge type. Then there is

an area in which we have at least two stationary modes of the giow

discharge type which are distinguished by the parameter I des-

cribing the coverage of the cathode surface. Finally there is a cer-

tain number of combinations U - J where we have not only solu-
c

tions of the glow discharge type but also solutions of the T o w n s e n d

type.
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J ANODIC PART OF THE GLOW DISCHARGE.

The situation of the anodic parts of the glow discharge is quite diffe-

rent from that of the cathodic parts.

The cathodic part of the glow discharge is of vital importance. The

anodic part is not. There is a substantial theoretical understanding

of the cathodic part and we can describe various possible modes on

the basis of one typical model, the "glow model". There is hardly

any quantitative theory for the anodic part and there is also no typi-

cal anode model.

However the existence of various s-modes has been observed though

they could not be treated theoretically. We restrict ourselves there-

fore here to give a qualitative picture of these observations.

If we first consider a plane anode placed into the discharge and being

in the negative glow then we have no detectable light phenomenon and

the anode drop is negative. This effect has been termed "the negative

anode fall".

When the anode is gradually moved away from the negative glow into

the Faraday dark space and further into the positive column then a

luminous layer forms in front of the anode, - the so-called anode

glow. At the same time the potential increases to positive values

with respect to the plasma potential. These observations are quite

understandable on the simple basis that the current of the charge

carriers diffusing to the anode surface must be identical with the

total current flowing in the discharge. Within the negative glow

the electron current component is too large and therefore a retarding

field is necessary. In the positive column however the electron dif-

fusion current is not sufficient and therefore an accelerating electric
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field is required which at the same time produces the light phenomenon

of the anode glow. The increase in the positive anode drop is limited

when ions are produced within the anode fall region so that the positive

4 space charge can break down the development. This simple type of

anode mode can be described roughly by an analysis which is similar

to that applied to the CFR. We refer the reader to FTR IL.

Modes different from the simple picture given above may be observed

in those cases where the current density in front of the anode is in-

creased due to a special geometry or limited surface of the anode.

Also if a gas load is present one may observe the so-called "pearls

and bubbles" which present a different anode s-mode. Fig. 2o shows

some examples of this type of mode. The axial extension of these spots

is much larger than the mean free path of the electrons which charac-

terize the extension of the anode glow. The anode spots occur preferen-

tially at corners and edges where the inhomogenity of the field causes

an increase in the current density. Depending on the experimental setup

n I1*. Iftt rio &W b, h.bl.." a toe a re [ll.

..........
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there may be a large number of anode spots which may be arranged

in a regular geometric pattern. (Fig. 20a). If the pressure is de-

creased the pearls develop into opaque bubbles (Fig. 20b).

The model underlying the phenomenon of pearls and bubbles is not yet

fully understood. Weizel and Hornbe rg claim that such a pearl

has an extension one order of magnitude larger than that of the normal

anode fall region. Therefore the concepts of mobility and diffusion

should be appropriate for describing the situation in the pearls and

bubbles. W ei zel and Ho rnb ergused these conceptsin the Poi -

son equations and at the same time applied the stationarity condition

similar to the calculation for the CFR. In agreement with the geome-

trical shape they applied a spherical polar coordinate system and came

to the conclusion that the pearls may be described as a plasma with
a positive space charge. The plasma is an extensive one which produces

many more carriers than are required for the current continuity. into

the column. The region of the pearls immediately in front of the anode

is described in linear form and essentially based on the concept of

ambipolar diffusion towards the anode. From these considerations

W ei z e I and Hornbe r g found the potential distribution. Again we

refer for details to FTR II.

For our present application the essential conclusion is:

In front of the anode - as in front of the cathode - a limited number

of s-modes are possible. The normal planar form of the anode fall

region can be described in terms similar to those of the CFR. In

addition "pearl and bubble modes" have been experimentally observed

and according to Weiael andHornberg maybe described as a

plasma with a positive space charge and an electrodic sheath which is

governed by the laws of ambipolar diffusion. The normal one-dimen-

sional AFR-s-mode and the pearl and bubble-s-mode can exist in the

same range of experimental parameters.
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VIII THERMAL INSTABILITY OF THE GLOW COLUMN.

INTRODUCTION.

Kadomtsev and Nedospasov 42 were the first to tackle the

problem of the instability of a collision dominated plasma column with

a superimposed external longitudinal magnetic field. In subsequent

papers Johnson and Jerde, Holter and others4 0 ,4 1 ,3 7

treated the problem in more detail and with more mathematical rigour.

51Sirhton and Krall considered the Kadomtsev type instabi-

lity of a low pressure discharge.

The result of these calculations shows that with increasing magnetic

field the m = 1-mode becomes unstable if the magnetic field surpasses

a certain critical value B
c

The physical picture behind this instability is rather simple. A density

disturbance of the stationary state produces an increase in the particle

production on the one hand and an increase in the particle loss on the

other hand. If the increase in the particle production overcomes the

increase in the particle loss and the two effects do not change the ini-

tial shape of the disturbance then we have an unstable eigensolution of

the problem.

One of the basic assumptions of all the calculations quoted above is

that together with the density disturbance no temperature disturbance

occurs.

Under these circumstances the mao-mode is stable, independent of

the magnetic field. The onset of the instability is determined by the

m=l-mode.
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However there are experiments which show an instability of the

m=o-mode with increasing current and increasing pressure. As an
47 97

example we refer to the experiments of Kenty and He rmann

Fio. ith E nxampis for culuitin .•od-. b•.fonr il .1it1.h thermal xektxbmhty.

Due to the neglection of a temperature disturbance the calculations of

the Kadomts ev type cannot be applied to these observations.

A temperature disturbance may cause instability even in the absence
of a magnetic field. It is the aim of this chapter to investigate this

"THERMAL INSTABILITY" of a cylindrical collision dominated plasma

column with and without a longitudinal magnetic field.

SYSTEM.

Subject of this investigation is again an infinite cylindrical plasma

column of radius R. The column is homogeneous in the z-direction.
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It contains gas of one kind. The theory of a column with several

neutral particle components follows exactly the same lines and re-

quires only additional summation. The gas is partially ionized and

we have electrons and one kind of singly charged ions. The concept

of quasineutrality holds. A longitudinal magnetic field of strength B

can be superimposed.

CONCEPT.

Within the range of the normal glow column (S c h o t t k y column) we

expect no temperature instability. As we will see the temperature in-

stability depends decisively on the coupling between density disturbance

and temperature disturbance. In the Schottky concept the tempe-

rature is assumed independent of the density distribution and there is

consequently no coupling between density disturbance and temperature

disturbance.

The situation is different in the case of the thermal glow column des-

cribed in chapter VII B. Here per definition the energy balance is of

importance and causes a coupling of the temperature distribution with

the density distribution. Consequently a density disturbance by necessi-

ty produces a temperature disturbance. The temperature disturbance

results in a change of the particle production coefficient. In this way

an additional influence on the particle production term via the electron

temperature can be expected and may cause instability even if there

is no instability of the Kadomtsev type.

For instance: A spontaneous increase in the electron density near the

axis of the discharge results in a decrease of the neutral particle den-

sity which in turn produces an increase in the electron temperature

and with that an additional particle production. This mechanism can be

the root of an instability.



83

BASIC EQUATIONS.

The equations governing the thermal glow column can be taken from

chapter VII B. They are represented in the law of particle conser-

vation of electrons

anIin (146)

C t r dr

and the equation for the electron temperature

A d
... (r (v u,
at dr " dr E , 0 (147)

with the particle production per second

oc -A4 eipj-3. (148)

and the coefficients

Sk p~nw ,(149)

eU; £

and

- k S TE 
(150)

The quantities B and AV are known from experiment (see equ. 60).

Equations (146) and (147) are two simultaneous differential equations

for the variables T and n

These equations together with the boundary conditions in the axis
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(151) dn dT(151) 0 --- - o for r o
dr ,fdr

and at the wall

(152) 7 0 o for r=R

define the radial distributions of temperature and particle density

as well as the eigenvalue of the longitudinal electrid field E .

SOLUTION OF THE EQUATIONS.

We want to treat the stability problem by the method of normal modes

which is based on a first order perturbation theory of the steady state

solution of our system. We therefore use the development

(153) n - n0)1, T. Tt÷ Ta) 0mo. 6 (1)
I

where the index (o) refers to the steady state. The index (1) designates

the disturbance. Introducing equation (153) into equations (146) and (147)

and remembering that the quantities with the index zero satisfy the

equations (55) and (63) we arrive at a set of relations for the first

order contributions

(154) . , r C.) Ce) n,) c.j-S~r dr (r -0')

and

a TO) ;1 d d7'
(155) r -() --e (r"

where all higher order terms are neglected.

We look for the eigensolutions of our perturbed problem by introducing

I
I



the relations

a IF(')ehI t r"'(i- t) r ce-)e-'t (156)

ti which give(

and

W A Esa(158)1

Since the equations are dominated by the operator

id d (159)

'7 r)~~I 7 Wr r 10
j•. we develop our eigensolutions in a set of B e s s e 1 functions according

• to

Tr . -S, r/R)1
where the hi are the zeros of the zero order Bessel function J .

From

('I' - i' r - (•e)fer(1 (161)

we find the relation

(-). '-s Z r,, j0(• r/) (162)
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If we introduce these developments (160) and (162) into equations (157)

and (158) a system of simple uncoupled linear equations for the coeffi-

cients n ,,and T/, would result if the coefficients of the equations

(157) and (158) were all constants.

Now in our present problem the coefficients D, u. .' and X' are

indeed considered constant. However the terms 44 n to and OW")

show a strong radial dependence which is defined by the solutions of

the zero order problem given in chapter VII B. This dependence can-

not be neglected and consequently we have to use for these terms new

developments of the form

Sit) n"- e J, (/3- r/Rr)
(163) to)Mw

The relation between the corresponding coefficients and n,,, and T

are

(164) R

Tvf te(OD)Wi I) (j9*~ rIR) J. (/3, r/Rfrdr

0R

(165)b., 2 ah(a)j'' (., "/R) 3/R rdr

Now we introduce equations (160), (162), (164) and (165) into equations

(157) and (158) and collect all terms with the same value Jo (p r/R).

Then the coefficients of these terms must all be zero due to the fact

that the relations (157) and (158) hold for any value of r in the range

o A r . R. This produces an infinite system of coupled linear equa-

tions for the coefficients n,y and T A . Since we have as many homo-

geneous equations as we have variables, the determinant of the system

must vanish. This secular determinant is
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o f .. Cos a* ,- .. .. CD AI

CV~l8~~O Sol o, C1.A41

'00aC 8n, 2-7 ;

0 Ee~i,.o) 0 0 s; (166)

R2

,. fJ "'.(p•,,R)1J,•( ,/rdr C1, R'(.,(cB,)J"
0 R

Ay& - f kP)) nJ 4,9 r/R)Jo(1s, fIR),rdr

The secular determinant defines the eigenvalues of our system. Intro-

ducing one of these eigenvalues in the equations allows to calculate the

coefficients of the corresponding eigensolution.

Our stability problem is therewith reduced to the solution of the seilar

determinant.

There are two reasons why this solution is extremely difficult. One !S

that we are dealing with an infinite determinant, the other that the cuef-

ficients occuring in this determinant are complicated integral expressions.

Approximations will therefore be unavoidable.

We suggest to simplify the problem by omitting the terms - v S

in the relations (164,165). This seems possible since the numerical

value of the integral expressions decreases rapidly with increasing

index number V " G . This is particularly true for small values

of s. It is favourable that our investigation is just interested in

these eigensolutions with a small number of modes (small s) which

decide the onset of the instability.
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Under these circumstances the determinant (166) after suitable rear-

rangement can be written as a product of determinants in the form

oat

(167)
F _s

act, x'ce.

Each of these factors provides a quadratic equation for two of the

possible eigenvdaes. From chapter III we know that a necessary

and sufficient condition for stability is that the coefficients in this

relation have the same sign.

This provides for the zero order mode the following instability criterion

(168) E

W_ The higher order modes become unstable if the condition

(169) -2 V ( )2]

is fulfilled.

pHere we have used the abbreviations
R

,its 2 J a Js' [.(P. r/,R) 1'r dr

(170)

(170)'• IN ; (,)', 10)

2 r)/A [j /Dhlpjrdr
[it10o)1



and

f, n (171)

An estimation of the quantities entering our criterion shows'that the

onset of the instability is determined by the zero order mode.

Since our calculations do not exclude the case of the normal glow column,

let us investigate whether our criterion (168) supports our expectation

that the normal glow column should be always stable.

In the case of Schottky's theory di is constant through the

discharge volume. Consequently we find = F ,(o). Using

the eigenvalue /Do=f/ (2, 4/R)2 from chapter VII A we

arrive at

-P 0
(172)

and should 'conclude - contrary to our expectations - that the normal

glow column is always unstable. This conclusion is of course incorrect.

Since in the normalS chottky theory the first term in equation (168)

is small of higher order we must include in our stability consideration

higher order contributions to the stationary eigenvalues

Let us therefore study higher approximations of the stationary solution

by using the development

net W e) = n..) n,.W T(@) T (00 T(*I (173)



90

Introducing this into equations (55, 63) we find

(174) ( r n (0 )+.or dr drn'n

and

(175) *0.(

rdr dr

Here dj(oo) is the zero order of the eigenvalue ( ( =2,4/R)aODl

a' is the correction term of the eigenvalue. ,(ol) is the perturbing

function which can be found from equation (30) using the relation

(176) cc 46 1) " •fT¢

• (.0) 0 ÷,.E' R' a €.

From well known perturbation theory it follows therefore for the

first order correction of the eigenvalue 0/(oo)

- rdr e( (W),.) [J, n0 S L /rdr

(177) a[n'c'frdr (, ) rr I d1[n(")] rr f[Jel srlR)]2d
a (

Introducing o,(°°) + S(1) in our criterion (23) gives after some

simple rearrangements the condition for instability 1 - 1. Clearly

this condition cannot be fulfilled and as expected the S chot t k y column

is always stable. If we carry the perturbation theory on to the second

order this fact is emphasized.

The situation is quite different for the thermal glow column. We refer

to the results calculated in chapter VII B. Introducing the eigenvalue

found in equation (81) our criterion determining the stability reads now

E -rft



and we see that instability of the thermally constricted Schottky

column can well occur.

IX INSTABILITY OF THE CATHODIC PART

OF THE GLOW DISCHARGE.

In the following we discuss a special type of instability of the cacho-

dic part of the glow discharge: The " V - A instability".

Let us recall the phenomenology and the mechanism of the cathodic

part of the glow discharge.

The cathodic part of the glow discharge is that region which is in-

fluenced by the cathode. If we carry out an infinitesimal displace-

* ment of the cathode keeping the current constant then all regions

where we find changes in the discharge parameters belong to the

cathodic part.

The so defined cathodic part of the glow discharge is subdivided in a

number of phenomenological zones and a number of model regions.

The two subdivisions are not identical.

The phenomenological regions:

1) The Aston dark space is in general small and may be absent with

high cathode falls. It lies immediately in front of the cathode and

is characterized by the fact that the electrons deliberated from the

cathode do not have sufficient energy to cause notable excitation.

2) The first cathode layer is a small layer of faint light which is dif-

fuse in the direction towards the anode. This is a zone in which

the electrons have just reached energies corresponding to the
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first excitation levels of the gas. Its decreasing visibility to-

wards the anode is due to the acceleration of the electrons and

the corresponding decrease in their excitation probability.

3) Hittorf's or Cfook'4 dark space appears dark in contrast to the

neighbouring regions of the first cathode layer and the negative

glow. When the electrons enter the Hittorf or Crook dark space

they have already energies above the excitation energies of the

gas and accummulate further energy in the electric field. Due to

this influerfce they finally surpass the state of drift motion and
become runaways 16b The beam character of the electrons

in the cathode fall region has been proved by a number of experi-

ments. One of the most obvious proofs is provided by an obstacle

in the Crook dark space. Under these circumstances the part of

the negative glow behind the obstacle disappears and also all the

corresponding cathode parts in the area of the obstacle are des-

troyed.

4) The negative glow is the most luminous region of the whole cathode

zone with a sharp boundary on the cathode side. This boundary is

called the glow edge. There is a continous decrease in brightness

towards the anode. The geometry of the negative glow is dependent

only on the geometrical form of the cathode and independent of po-

sition and form of the anode. This is due to the fact that the elec-

tron beams are practically always perpendicular to the cathode sur-

face.

5) Faraday dark space is a region of low luminosity which is limited

by the anode itself or by the head of the positive column. The length

of the Faraday dark space increases with the radius of the discharge

vessel and is in general larger than the extension of the negative glow.

In the Faraday dark space the charged particles diffuse towards the

anode and towards the wall. There is virtually no electric field and

no particle production in this region.



The model regions describing the situation in the cathodic part of the

glow discharge are the cathode fall region (CFR), the nega-

tive glow region (NGR) and the Faraday dark space re-

gion (FDR). We have already discussed the properties of these model

regions in our descri,ýtion of the s-mode of the cathodic part of the

glow discharge in chapter VII I

It is impracticable to treat the complicated problem of instability of

the cathode part of the glow taking into account all the details and ex-

tensions given in FTR II. Rather we will have to restrict ourselves

here from the very beginning to tne most simple description of the

cathodic part of the glow discharge, which is possible without affecting

the principal features of the instability criterion.

It is sufficient to consider the CFR. The conditions in the negative

glow enter these calculations via the boundary condition

S" - . ('d ) (179)

A complete theory would have to calculate the coefficient 6 from

the theory of the NGR. This was not achieved in the case of the sta-

tionary solution and is of course even less possible in the nonstationary

case. However this lack of knowledge will not affect our following cal-

culations since we allow quite generally for a variation of S with the

electron current density j_(d) .

We write down the nonstationary equations governing the CFR in the

usual one-dimensional approximation. We have the particle conserva-

tion laws

a_•n. -____/__.•.

An = I-/e 1V a (180)
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and

(181) at 0z

where j_, j+ describes the current density and n_, n+ the average

particle number density for the electrons and ions respectively.

The coefficient e designates the production of particles per cm and

electrons in the CFR. This is in general a very complicated quantity

since the electron in the CFR have partly runaway character. Their

velocity depends on their origin in the CFR and consequently their

velocity distribution is upto now unknown. The problem has been dis-

cussed in FTR II. In general 0 must be considered as a function of

the electric field E(z) and the time t

(182) - 4* (E, t)

However we will study a variation of our system with a characteristic

time large in comparison to the relaxation time of the electron motion

and production. Under these circumstances the motion of the electrons

and their production is defined by the momentary electric field E(z)

in the CFR and we have

(183) -

and for the momentum balances

I-.-
(184) n..- ().

and

(185) at. (E) n#
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where the coefficients •. and •* are both positive quantities. The

U: geometry of our coordinate system is shown in Fig. 22

For the ions it may be safe to assume

mobility limited motion. For the elec-

trons this assumption is rather doubt-

ful. Fortunately we do not need to spe-

cify the quantities M., W* '_ _ ___

1i8 . Us Coowdaitew syaews aoln syndami used

We have further the Poi s s on equa- • a.o .Iph.o*l...

L tion

eE-- 6 (n,-nn.) (186)

Equations (180,181) and (183-186) define the situation in the CFR together

with the boundary conditions at the cathode surface and at the anode sur-

face.

At the NGR boundary we have the condition (179). We recall that the

coefficient S in general must be considered depending on the current

j_(d). Also at the NGR boundary we assume for the electric field

SE d) - o (187)

At the cathode surface the electrons deliberated from the cathode are

due to ion bombardment of the cathode surface. Therefore we have

the condition

(0) r + (0)(188)

where the coefficient 3' - for the same reason as - may be still

a function of the current density j +(o).
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We suggest to study the -- J instability defined by the following con-

cept.

We have a given stationary solution of the model regions of the catho-

dic part of the glow discharge as described in FTR II. It is assumed

that radial boundary effects are negligible, so that the whole situatiorn

can be treated one-dimensional. Now we superimpose a momentary

disturbance of the parameters describing the cathodic part. This

disturbance is,limited to a small fraction of the whole cathode area.

The lateral extension of this disturbance is subject to two counteracting

conditions. On the one hand the lateral extension is still large enough

to allow the one-dimensional description. On the other hand the lateral

extension of the channel has to be small enough so that most of the

field lines originating from the space charge caused by the disturbance

leave the discharge channel in lateral direction and do therefore not

effect the coefficients 9 and C . There is a wide range of dis-

turbances for which these conditions are fulfilled simultaneously.

To the so defined model we apply perturbation theory and have

" n() rt 1) ( 4•) 0

(189) 04 )O

Here the index (o) characterizes the stationary solution, the index (1)

the nonstationary disturbance.

Recalling our assumptions introduced above the first order components

of the current densities are defined by the equations

+ 0

4)t L.

and

I=
__ __ __ __ _
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The boundary conditions (179) and (188) read in the first order approxima-

tion, - remembering the dependence of O on j_(d) and r on

j4 (o)

"'•, i - " -,.JJ'• '". ) (192)

and

(0) r + djo (d) ..- (193)

We look for the eigensolutions of this problem by introducing

(194)

into equations (190) and (191). The result is

d*(A)

and

*iA)(A
2# d •'+ S .G g (196)

In these equations the symbol Sg is identical with the sign of the

current Jia). Equation (195) may be at once integrated resulting in

(A) (A) (197)
(0) arp. f~j +AL) d

5_
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where we have now introduced a new production coefficient of the form

(198) *

This fact should be carefully observed in case j_(A) goes through zero.

The method of the variation of the constant gives for the second equa-

ti on

'L#. n. *K _j x
(199) 00 (A) At+) -

Applying the boundary conditions (193) and (192) we find

(200) ()o

and

(201) ° d d _

0 0

Since - is very much larger than be+ we may reduce this

equation to

We further introduce the new variable



A (203)
u . '( .i )dj. u (d)-v(0

0

which gives

.am O +-- d (2o4)So~p(t-cii) 'i S ,le/ae

Within the frame of our approximations it is quite safe here to consider

the term O/(* A 0/9,) in the integral (204) as constant in compa-

rison to the exponential. We replace it by the average value

d d d•:,, Z dic (Z dz. Z dz ho/•(z
I /S dz/w (205)

0 0

and arrive at

!•d d.

0 0

Equation (206) is the dispersion relation defining the eigenvalues of our

instability problem.

This equation provides a whole set of complex numbers (0, which

are related to the eigonvalues A by

-e " -(,,d)/j 'd. (207)

_ 0I
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Our cathodic part of the glow discharge can be considered stable

then and only then if the real parts of the complex numbers A.

have all negative values. With other words the relation must hold

d
(208) C dz

0

Let us now - following Nyqui st - consider the function

d d

(209) W +( 12 dz/1w I rP (-W) - Jdcz/W
• 0

which describes a transformation from the Ca - complex plane into

the W-complex plane.

We decide on the question of stability by using the relations (7) and

(8) of chapter III. According to equation (209) we have to choose our

integral contour for equation (7) as shown in Fig. 23. (remember

that X is a negative quantity due to the sign j(A)

To see under what circumstances the path in the W-plane encircles

the origin let us construct the W number vector by adding it up

from the various contributions of relation (209).

There is first the constant contribution -I/. . (See Fig. 23).

The second contribution

d d
(210) -;.dz/w f a dr/(X#iY)

0 0

is in comparison to the exponential contribution only little varying.

Its absolute value is also small in comparison to the exponential
contribution. It is given in Fig. 23 by the vector . Finally

there is the third contribution
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£ J.J dz/w oirp(c ) r (a)1

consisting of two parts which are represented in Fig. 23 by the

vectors ?a and f -r rotates around the point +/•4

in the W-plane with a frequency defined by the imaginary part of go

A detailed discussion of the vector diagram of Fig. 23 indicates that

the largest value of the real part of W occurs for

y - o ond x S- JW Idz (212)
a

Therefore encircling of the W-origin can be expected only if for the

values of equation (212) W has a positive real part (Wr " o). It

follows

d
(71 + vPJII dZj I it (213)

for the stability of our system.

Let us remember that the stationarity condition has the form

d
(24

Then we recognize that •"- instability will occur if the relation

(r 0o)(6 )+

holds.
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If either A or 'i or both

of these quantities are larger f . W

than 6 or r , then in-

stability will occur. But insta-

bility can even occur if one of

these quantities is sufficiently La ./ • '".'

larger than the undisturbed

value and the other one is small

but in effect not overcoming the
Fie. a k NyqWOst nPpft for k* ditpereio@

influence of the first quantity. M.AO-.of t. r.6 i,.,6btiity.

These results are quite visible. If an increase in the current density

of the electrons results in an ion component from the negative glow

larger than that necessary for the stationary state we will expect an

avalanche process causing instability. The same holds if an increase

in the ion current density produces an electron cathode emission too

large for the stationary state.

It should be noted particularly that a spontaneous increase in the cur-

rent density of the CFR itself does n o t produce instability. The insta-

bility occurs only if the current density increase goes along with a

change in the coefficients t and 6 !

It is very difficult to relate these results to experimental observations.

There are quite a number of experiments (e. g. 91, 92, 93, 58, 18, 19, 25, 27,28,

95, 96, 8, 10, 38 ) which show cathodic glow instability and point directly

to the importance of small size surface impurities. The experiments

would allow an explanation with our - 6 instability but they do not

exclude other possibilities.
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X STABILITY PRINCIPLES IN GASEOUS ELECTRONICS.

In chapter III we sketched a general method to derive variational prin-

ciples for stability. This method requires a certain set of equations

which describes the whole phenomenon under consideration. As an

example we refer to the calculation of the magneto hydrodynamic

principle 9

The application of this general method to problems of gaseous elec-

tronics confronts us with the difficulty that there is in gaseous elec-

tronics no unique set of differential equations describing the whole

field. Rather in any gas discharge we have a certain number of model

regions and each of them is governed by different sets of equations.

In contrast to the situation in magneto dydrodynamics we can there-

fore not expect to find one principle governing all gas discharges.

In the best case we can hope to have different principles for different

discharges and discharge parts.

The derivation of such variational principles is a very involved problem

as can be seen for instance from the investigation 9 It is there-

fore beyond the scope of this investigation.

We will however discuss here two important problems. The one is the

question question whether the well known "principle of minimum

entropy production" of irreversible thermdynamics may be used

to decide on the stability in gaseous electronics. The second is the dis-

cussion of "Ste enbeck's minimum principle" which has been

widely applied in gaseous electronics to decide on stable modes.

A THE PRINCIPLE OF MINIMUM ENTROPY PRODUCTION.

The "principle of minimum entropy production" can be applied if the

following conditions are met:
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1. ) G i b b 's fundamental equation

(216) TdS - dU + PdY -Z a. i dMt

must hold.

2.) The linear phenomenological relations between the thermodynamical

fluxes and forces should be valid.

3.) The On s a g e r C a s i m i r reciprocity relations should be appli -

cable.

4.) The phenomenological coefficients should be time-independent.

5.) The system should be in mechanical equilibrium or at least in a

stationary mechanical state according to

(217) 0 o
21t a t

6.) At all parts of the surface of the system one of the two following

conditions must hold. Either the temperature and the chemical poten-

tials should be time-independent or the temperature should be time-

independent and the normal component of all mass current should dis-

appear.

These conditions imply that each component of the system is close to

equilibrium. The principle of minimum entropy production states:

The stationary states of a system subject to the above conditions are

characterized by a minimum of entropy production. These states are

also stable
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If we write down the equations of irreversible thermodynamics for a

plasma satisfying the above conditions and apply the principle of mi-

nimum entropy production then the Eu 1 e r equations of the varia-

tional problem are identical with the transport equations. Since we

are on the other hand close to equilibrium the Saha equation is

valid. The application of the energy transport equation and the Saha

equation is the basic scheme of the "arc approximation" described

in chapter VI B.

Therefore an important conclusion can be drawn from the principle

of minimum entropy production:

Any discharge part which can be described by the arc approximation

and has boundary conditions which meet the conditions (6) and (7) is

always a stable one.

On the other hand, any discharge part which is not governed by the

laws of the arc approximation cannot be subject to the application

of the principle of minimum entropy production.

Therefore the wall stabilized arc column treated in chapter VII E

is always a stable mode. By the same token all other modes described

in chapter VII cannot be subject to the application of the principle of

minimum entropy production.

However it is still possible to apply the principle to that part of a dis-

charge mode described by the arc approximation - provided that the

interface limiting this region is not varied.

With this restriction the thermal nucleus of the wall detached arc

column shows the same stability as the wall stabilized arc.
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If we allow for variations of the interface between the two model

regions then no conclusion on the stability can be drawn from the

application of the minimum entropy production principle since all

the calculations carried out for this principle underlie the basic

assumption that we have boundary conditions fixed in space. The

latter problem of the stability of the wall detached arc column with

respect to variations of the diameter of the thermal nucleus leads

us over to the problem of the S t e e nb e c k minimum principle.

B Steenbeck's MINIMUM PRINCIPLE.

Following an investigation of C o m p t o n and M o r s e,

S t e e n b e c k has claimed the following postulate:

In a real gas discharge of constant total discharge current the energy

production and with that the voltage applied to the electrodes is a

minimum.

If one identifies a "real discharge" with a discharge which is stable

then S t e e n b e c k' s minimum principle is a variational principle

for stability.

Ste enbe ck 's minimum principle could be varified in a number of

experiments, e.g. 20, 83,99 The theoretical discussion has in-

vestigated whether S t e e n b e c k' s empirical postulate can be justified.

There are essentially two questions.

1) Is Ste e nb e ck" s minimum principle a true variational principle

for stability?

2) If it is a true variational principle what are the conditions for the

application of this principle?
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Wei zel and Romps investigated the question whether in the

range of the arc approximation the E 1 e n b a a s - H e 11 a r equation is
Euler's equation of Steenbeck's minimum principle. They come

to the conclusion that in general this is not the case.

S~65
Pete r s starts from the minimum entropy production principle

of irreversible thermodynamics and tries to deduce St a enbe c k' s

postulate from this principle. He finds Ste enbe ck' s principle.
52

However Krause and Steenbeck pointed out that these cal-

culations include the inaccurate restriction to variations into stationary

states.

According to Kr a u s e and Ste en be c k such variations into sta-

tionary states are possible if one uses the "canal model". Therefore

for this canal model S t e e n b e c k' s minimum principle follows from

the principle of minimum entropy production and for this special case

is therefore manifested as a true variational principle.

In consideration of the canal model other investigators 20

came to the conclusion that Ste enbe ck' s principle is a mean to

determine the additional parameter of the discharge diameter intro-

duced by the canal model.

The most refined discussion of S t e e n b e c k' s principle has been given
84

recently by Steenbeck himself 8 Steenbeck states that

Elenbaas-Heller 's equation is only an approximation. A more

exact description including additional effects would increase the num-

ber of degrees of freedom. The corresponding boundary conditions for

these variables may be ineffective. Then Steenbeck says there is

not only space for the application of a minimum principle but there is

even the necessity of the application of such a principle to select the

actual discharge mode.

Our interpretation of the S t e e nb e c k principle may be described as
follows:
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Let us consider quite generally any kind of a discharge volume des-

cribed by a certain set of differential equations. Let us assume further

that we have a sufficient number of effective boundary conditions for

all variables occuring in these equations.

Then there is one and only one stationary solution for these differential

equations with the given boundary conditions. If there is at all a stable

solution it must be this stationary solution.

Now any physical system is subject to statistical fluctuations. If the

influence of one or more of the boundary conditions is decreased then

we reach a point where the influence of these boundary conditions comes

below the level of the average statistical fluctuations. In this case the

corresponding boundary condition becomes ineffective (see chapter VI C).

Due to the lack of this boundary condition we do not have only one solu-

tion but a whole manifoldness of stationary solutions of our system. In

a physical experiment we will observe that one of all these stationary

solutions which is stable. Under these circumstances we therefore al-

ways need a stability criterion which selects the solution observed in

the experiment. The kind of this criterion depends on the physical si-

tuation.

With respect to Ste enbeck" s minimum principle we now consider a

discharge consisting of an arc model region and a glow model region

separated by an interface (e. g. wall detached arc column, cathodic

part of the arc discharge).

As was explained in the chapters VI C, VII F, VII G the boundary con-

ditions for this arrangement may become ineffective if the walls are

removed too far. Then the shape of the discharge is not uniquely deter-

mined anymore. In our model representation this is reflected in the

variability of the position of the interface. For the case of the wall
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detached arc column the position of the interface is described by the

diameter of the arc nucleus.

It is our opinion that St e e n b e c k' a minimum principle selects

that mode which is stable with respect to disturbances in the position

of the interface. With respect to all other disturbances the thermal

nucleus is stable according to the principle of minimum entropy

production. Therefore - for our special arrangement of an arc model

region and a glow model region - S t e e n e c k' s minimum principle

is a sufficient criterion.

______ ____
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